Have a personal or library account? Click to login
Synthesis, microstructural evolution, and compaction behavior of Mg30-Al25-Ti25-Li15-Si5 lightweight high-entropy alloys synthesized via mechanical alloying Cover

Synthesis, microstructural evolution, and compaction behavior of Mg30-Al25-Ti25-Li15-Si5 lightweight high-entropy alloys synthesized via mechanical alloying

Open Access
|Mar 2025

Figures & Tables

Figure 1

Surface morphology of as-received elemental powders used to synthesize LWHEA in this work by SEM: (a) Mg, (b) Al, (c) Ti, and (d) Si.
Surface morphology of as-received elemental powders used to synthesize LWHEA in this work by SEM: (a) Mg, (b) Al, (c) Ti, and (d) Si.

Figure 2

SEM images of the microstructures of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing powder surface morphology: (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.
SEM images of the microstructures of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing powder surface morphology: (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.

Figure 3

SEM images of the microstructures with EDAX analyses of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing element composition (both wt% and at%): (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.
SEM images of the microstructures with EDAX analyses of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing element composition (both wt% and at%): (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.

Figure 4

SEM images of the microstructures with elemental mapping of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing the distribution of the incorporated elements and alloy formation (first from left image: SE SEM microstructure; immediate right of four images: mapping of Mg, Al, Ti, and Si): (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.
SEM images of the microstructures with elemental mapping of MAed Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (5, 15, and 20 h) showing the distribution of the incorporated elements and alloy formation (first from left image: SE SEM microstructure; immediate right of four images: mapping of Mg, Al, Ti, and Si): (a) L1-5 h, (b) L1-10 h, and (c) L1-20 h.

Figure 5

XRD peaks of the as-received elemental powders of (a) Mg, (b) Al, (c) Ti, (d) Li, and (e) Si.
XRD peaks of the as-received elemental powders of (a) Mg, (b) Al, (c) Ti, (d) Li, and (e) Si.

Figure 6

XRD patterns of the milled Mg30-Al25-Ti25-Li15-Si5 LWHEA powders for different durations: (a) L1-0 h, (b) L1-5 h, (c) L1-10 h, and (d) L1-20 h samples.
XRD patterns of the milled Mg30-Al25-Ti25-Li15-Si5 LWHEA powders for different durations: (a) L1-0 h, (b) L1-5 h, (c) L1-10 h, and (d) L1-20 h samples.

Figure 7

Scherrer model: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).
Scherrer model: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).

Figure 8

W-H UDM: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).
W-H UDM: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).

Figure 9

W-H USDM: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).
W-H USDM: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).

Figure 10

SSP model: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).
SSP model: (a) Mg30-Al25-Ti25-Li15-Si5 (0 h), (b) Mg30-Al25-Ti25-Li15-Si5 (5 h), (c) Mg30-Al25-Ti25-Li15-Si5 (10 h), and (d) Mg30-Al25-Ti25-Li15-Si5 (20 h).

Figure 11

Structural properties of Mg30-Al25-Ti25-Li15-Si5 (0, 5, 10, and 20 h) nanocomposite powders milled at different durations: (a) dislocation density, (b) excess free volume, (c) SFP, and (d) N–R parameter.
Structural properties of Mg30-Al25-Ti25-Li15-Si5 (0, 5, 10, and 20 h) nanocomposite powders milled at different durations: (a) dislocation density, (b) excess free volume, (c) SFP, and (d) N–R parameter.

Figure 12

HRTEM analysis of MAed LWHEA powders for different milled duration times: (a1–a4) BFI, (b1–b4) DFI, and (c1–c4) SAED.
HRTEM analysis of MAed LWHEA powders for different milled duration times: (a1–a4) BFI, (b1–b4) DFI, and (c1–c4) SAED.

Figure 13

HRTEM – elemental mapping and EDS analyses of the Mg30-Al25-Ti25-Li15-Si5 (20 h) LWHEA powder samples.
HRTEM – elemental mapping and EDS analyses of the Mg30-Al25-Ti25-Li15-Si5 (20 h) LWHEA powder samples.

Figure 14

HRTEM – lattice fringes of the Mg30-Al25-Ti25-Li15-Si5 LWHEA powder samples: (a) Mg30-Al25-Ti25-Li15-Si5 0 h, (b) Mg30-Al25-Ti25-Li15-Si5 – 5 h, (c) Mg30-Al25-Ti25-Li15-Si5 10 h, and (d) Mg30-Al25-Ti25-Li15-Si5 – 20 h lattice fringes correspond to (2 0 0).
HRTEM – lattice fringes of the Mg30-Al25-Ti25-Li15-Si5 LWHEA powder samples: (a) Mg30-Al25-Ti25-Li15-Si5 0 h, (b) Mg30-Al25-Ti25-Li15-Si5 – 5 h, (c) Mg30-Al25-Ti25-Li15-Si5 10 h, and (d) Mg30-Al25-Ti25-Li15-Si5 – 20 h lattice fringes correspond to (2 0 0).

Figure 15

Compaction behavior of Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (0, 5, 15, and 20 h) showing the behavior at various stages: (a) cold compaction at RT; (b) hot compaction at 275°C; and (c) hot compaction at 550°C.
Compaction behavior of Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (0, 5, 15, and 20 h) showing the behavior at various stages: (a) cold compaction at RT; (b) hot compaction at 275°C; and (c) hot compaction at 550°C.

A list of low-density elements selected for the present study [14]_

ElementAtomic numberAtomic radius (nm)Melting temperature (K)Density (g/cm3)
Mg240.12499231.74
Al260.1241933.32.70
Ti130.14321,9414.50
Li270.1251453.50.53
Si140.11531,6872.33

Chemical composition of the developed Mg30-Al25-Ti25-Li15-Si5 LWHEA_

MgAlTiLiSi
Wt%At%Wt%At%Wt%At%Wt%At%Wt%At%
3024.572518.452510.401543.0353.55

Variation in relative density in different stages during compaction (both cold and hot compaction) as a function of compaction pressure and temperature for Mg30-Al25-Ti25-Li15-Si5 LWHEAs milled for different times (0, 5, 15, and 20 h)_

Sample T (°C) P (MPa)Compaction stagesRD (%)Sample T (°C) P (MPa)Compaction stagesRD (%)
L1-0 hRT20Particle rearrangement stage56.81L1-5 hRT20Particle rearrangement stage55.85
3061.553060.43
4065.564064.30
5068.975067.57
60Elastic deformation stage71.9560Elastic deformation stage70.42
7074.717073.07
8077.158075.40
9079.559077.69
10081.7010079.74
125Plastic deformation stage86.38125Plastic deformation stage84.19
15090.3815087.98
17594.2217591.62
20097.4020094.63
27520Particle rearrangement stage61.2627520Particle rearrangement stage60.43
3065.343064.39
4068.674067.62
5071.685070.54
60Elastic deformation stage74.3460Elastic deformation stage73.11
7076.807075.49
8078.838077.45
9080.859079.40
10082.6610081.15
125Plastic deformation stage87.05125Plastic deformation stage85.38
15091.1715089.33
17594.9017592.91
20098.3620096.22
55020Particle rearrangement stage69.0455020Particle rearrangement stage68.47
3072.423071.80
4075.134074.46
5077.515076.79
60Elastic deformation stage79.7360Elastic deformation stage78.98
7081.797081.00
8083.568082.72
9085.269084.51
10086.9310086.03
125Plastic deformation stage90.48125Plastic deformation stage89.64
15093.8215092.77
17596.8217595.71
20099.6720098.48
L1-10 hRT20Particle Rearrangement stage54.22L1-20 hRT20Particle Rearrangement stage52.33
3058.623056.33
4062.254059.67
5065.315062.48
60Elastic deformation stage67.9760Elastic deformation stage64.92
7070.437067.16
8072.598069.12
9074.729071.04
10076.6110072.75
125Plastic deformation stage80.71125Plastic deformation stage76.44
15084.1915079.55
17587.5217582.51
20090.2520084.94
27520Particle rearrangement stage59.40L1-20 h27520Particle rearrangement stage57.80
3063.223061.41
4066.344064.35
5069.145066.98
60Elastic deformation stage71.6160Elastic deformation stage69.29
7073.897071.43
8075.778073.18
9077.649074.92
10079.3010076.47
125Plastic deformation stage83.34125Plastic deformation stage80.22
15087.1115083.70
17590.5017586.83
20093.6420089.72
55020Particle rearrangement stage69.97L1-20 h55020Particle rearrangement stage68.88
3072.893071.71
4075.294074.03
5077.395076.06
60Elastic deformation stage79.3360Elastic deformation stage77.94
7080.977079.52
8082.588081.07
9084.069082.50
10085.4710083.85
125Plastic deformation stage88.66125Plastic deformation stage86.92
15091.4615089.61
17594.0617592.10
20096.4820094.42

Estimation of the size and strain for different milled time durations of Mg30-Al25-Ti25-Li15-Si5 LWHEA powders_

Sample/modelParameterMg30-Al25-Ti25-Li15-Si5 (0 h)Mg30-Al25-Ti25-Li15-Si5 (5 h)Mg30-Al25-Ti25-Li15-Si5 (10 h)Mg30-Al25-Ti25-Li15-Si5 (20 h)
ScherrerSize (D) (nm)1422.141066.7100719.3300618.4100
W-H UDMSize (D) (nm)90.570089.030081.320073.7200
Strain (ε) (%)0.00020.00130.00440.0097
W-H USDMSize (D) (nm)47.020044.500034.580030.8000
Strain (ε) (%)0.00040.00110.00320.0043
SSPSize (D) (nm)98.040060.220054.190042.5300
Strain (ε) (%)0.00010.00080.00100.0030

Properties of the elements used in the present study to develop the Mg30-Al25-Ti25-Li15-Si5 alloy_

ElementAtomic numberAtomic radius (nm)Pauling electronegativityVECAtomic weightMelting temperature (K)Density (g/cm3)
Mg240.12491.660651.99612,1807.2
Al260.12411.833855.84501,8117.9
Ti130.14321.610326.98159332.7
Li270.12511.880958.93321,7688.9
Si140.11531.900428.08551,6872.3

Enthalpy of mixing ( H mix AB {H}_{\text{mix}}^{\text{AB}} ) between each pair of elements in the Mg30-Al25-Ti25-Li15-Si5 developed alloy_

ElementMgAlTiLiSi
Mg Mg −2160−26
Al−2 Al −30−4−19
Ti16−30 Ti 34−66
Li0−434 Li −30
Si−26−19−66−30 Si

Physicochemical and thermodynamic properties for the Mg30-Al25-Ti25-Li15-Si5 developed alloy powders via MA_

Alloy codeMixing enthalpy, ΔH mix (kJ/mol)Entropy of mixing, ΔS mix (J/mol K)Gibbs free energy, Δ G mix \text{Δ}{G}_{\text{mix}} (J/mol)Melting temperature, T m (K)Thermodynamic parameter, ΩMean atomic radius, r ¯ \bar{r} (nm)Atomic size difference, δ (%)Valency electron concentration, VECDifference in Pauling electronegativity, Δ X \text{Δ}X Density, ρ (g/cm3)
L1-0, L1-5, L1-10, and L1-20−0.420511.42−3,823855.815.820.15045.93%−0.420511.421.704

Ball milling processing parameters of the developed Mg30-Al25-Ti25-Li15-Si5 LWHEA_

Alloy codeChemical compositionPBRMilling speedMilling time (h)
L1-0Mg30-Al25-Ti25-Li15-Si5 15:1300 rpm0 (premixed Conditions)
L1-55
L1-1010
L1-2020
DOI: https://doi.org/10.2478/msp-2025-0014 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 149 - 172
Submitted on: Jan 28, 2025
Accepted on: May 26, 2025
Published on: Mar 31, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hany R. Ammar, Subbarayan Sivasankaran, Fahad A. Al-Mufadi, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.