Have a personal or library account? Click to login
Enhanced areal capacitance through potassium incorporation into the graphene framework of laser-induced graphene for flexible electronics using LiCl gel electrolyte Cover

Enhanced areal capacitance through potassium incorporation into the graphene framework of laser-induced graphene for flexible electronics using LiCl gel electrolyte

Open Access
|Mar 2025

References

  1. [1] Yan, Z., Luo, S., Li, Q., Wu, Z., Recent advances in flexible wearable supercapacitors: properties, Fabrication, Appl., 2024, 11: 2302172. 10.1002/advs.202302172
    Yan Z. Luo S. Li Q. Wu Z. Recent advances in flexible wearable supercapacitors: properties Fabrication, Appl 2024 11 2302172 10.1002/advs.202302172
  2. [2] Chen, Z., He, G., You, T., Zhang, T., Liu, B., Wang, Y., Journal of Environmental Chemical Engineering Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicity, J. Environ. Chem. Eng., 2024, 12: 112191. 10.1016/j.jece.2024.112191
    Chen Z. He G. You T. Zhang T. Liu B. Wang Y. Journal of Environmental Chemical Engineering Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicity J. Environ. Chem. Eng. 2024 12 112191 10.1016/j.jece.2024.112191
  3. [3] Khan, H.A., Tawalbeh, M., Aljawrneh, B., Abuwatfa, W., Al-Othman, A., Sadeghifar, H., et al., A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges, Energy, 2024, 295: 131043. 10.1016/j.energy.2024.131043
    Khan H.A. Tawalbeh M. Aljawrneh B. Abuwatfa W. Al-Othman A. Sadeghifar H. A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges Energy 2024 295 131043 10.1016/j.energy.2024.131043
  4. [4] Yuan, Y., Han, C., Guo, L., Wu, X., Zhao, Y., Exploring the mechanisms of magnetic fields in supercapacitors: material classification, material nanostructures, and electrochemical properties, J. Mater. Chem. A, 2024, 12: 6165–6189. 10.1039/D3TA07658J
    Yuan Y. Han C. Guo L. Wu X. Zhao Y. Exploring the mechanisms of magnetic fields in supercapacitors: material classification, material nanostructures, and electrochemical properties J. Mater. Chem. A 2024 12 6165 6189 10.1039/D3TA07658J
  5. [5] Abraham, D.S., Bhagiyalakshmi, M., Vinoba, M., Chapter 3 - Supercapacitors: basics and progress, In: Kulkarni N.V., B. I. B. T. H. of E.M. for S.E. Kharissov, (Eds.). Elsevier, 2024, pp. 61–82. 10.1016/B978-0-323-96125-7.00021-6
    Abraham D.S. Bhagiyalakshmi M. Vinoba M. Chapter 3 - Supercapacitors: basics and progress In: Kulkarni N.V. B. I. B. T. H. of E.M. for S.E. Kharissov (Eds.). Elsevier 2024 pp. 61 82 10.1016/B978-0-323-96125-7.00021-6
  6. [6] Chen, Z., Zhao, S., Zhao, H., Zou, Y., Yu, C., Zhong, W., Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications, Chem. Eng. J., 2021, 409: 127891. 10.1016/j.cej.2020.127891
    Chen Z. Zhao S. Zhao H. Zou Y. Yu C. Zhong W. Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications Chem. Eng. J. 2021 409 127891 10.1016/j.cej.2020.127891
  7. [7] Pham, H.D., Mahale, K., Hoang, T.M.L., Mundree, S.G., Gomez-Romero, P., Dubal, D.P., Dual carbon potassium-ion capacitors: biomass-derived graphene-like carbon nanosheet cathodes, ACS Appl. Mater. Interfaces, 2020, 12: 48518–48525. 10.1021/acsami.0c12379
    Pham H.D. Mahale K. Hoang T.M.L. Mundree S.G. Gomez-Romero P. Dubal D.P. Dual carbon potassium-ion capacitors: biomass-derived graphene-like carbon nanosheet cathodes ACS Appl. Mater. Interfaces 2020 12 48518 48525 10.1021/acsami.0c12379
  8. [8] Khandelwal, M., Van Tran, C., Lee, J., In, J.B., Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications, Chem. Eng. J., 2022, 428: 131119. 10.1016/j.cej.2021.131119
    Khandelwal M. Van Tran C. Lee J. In J.B. Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications Chem. Eng. J. 2022 428 131119 10.1016/j.cej.2021.131119
  9. [9] Shaalan, N.M., Ahmed, F., Kumar, S., Ahmad, M.M., Al-Naim, A.F., Hamad, D., Electrochemical performance of potassium bromate active electrolyte for laser-induced KBr-graphene supercapacitor electrodes, Inorganics, 2023, 11: 109. 10.3390/inorganics11030109
    Shaalan N.M. Ahmed F. Kumar S. Ahmad M.M. Al-Naim A.F. Hamad D. Electrochemical performance of potassium bromate active electrolyte for laser-induced KBr-graphene supercapacitor electrodes Inorganics 2023 11 109 10.3390/inorganics11030109
  10. [10] Karaman, C., Bayram, E., Karaman, O., Aktaş, Z., Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors, J. Electroanal. Chem., 2020, 868: 114197. 10.1016/j.jelechem.2020.114197
    Karaman C. Bayram E. Karaman O. Aktaş Z. Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors J. Electroanal. Chem. 2020 868 114197 10.1016/j.jelechem.2020.114197
  11. [11] Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene, Chem. Rev., 2010, 110: 132–145. 10.1021/cr900070d
    Allen M.J. Tung V.C. Kaner R.B. Honeycomb carbon: a review of graphene Chem. Rev. 2010 110 132 145 10.1021/cr900070d
  12. [12] Ghuge, A.D., Shirode, A.R., Kadam, V.J., Graphene: A comprehensive review, Curr. Drug. Targets, 2017, 18: 724–733. 10.2174/1389450117666160709023425
    Ghuge A.D. Shirode A.R. Kadam V.J. Graphene: A comprehensive review Curr. Drug. Targets 2017 18 724 733 10.2174/1389450117666160709023425
  13. [13] Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., et al., Laser-induced porous graphene films from commercial polymers, Nat. Commun., 2014, 5: 5–12. 10.1038/ncomms6714
    Lin J. Peng Z. Liu Y. Ruiz-Zepeda F. Ye R. Samuel E.L.G. Laser-induced porous graphene films from commercial polymers Nat. Commun. 2014 5 5 12 10.1038/ncomms6714
  14. [14] Ngidi, N.P.D., Ollengo, M.A., Nyamori, V.O., Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials (Basel), 2019, 12: 3376. 10.3390/ma12203376
    Ngidi N.P.D. Ollengo M.A. Nyamori V.O. Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide Materials (Basel) 2019 12 3376 10.3390/ma12203376
  15. [15] Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R., Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett., 2010; 10: 751–758. 10.1021/nl904286r
    Dresselhaus M.S. Jorio A. Hofmann M. Dresselhaus G. Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy Nano Lett 2010 10 751 758 10.1021/nl904286r
  16. [16] Popov, V.N., Two-phonon Raman scattering in graphene, AIP Conf. Proc., Vol. 2075, 2019, p. 110001. 10.1063/1.5091252
    Popov V.N. Two-phonon Raman scattering in graphene AIP Conf. Proc Vol. 2075 2019 p. 110001 10.1063/1.5091252
  17. [17] Popov, V.N., Two-phonon Raman bands of bilayer graphene: Revisited, Carbon N. Y., 2015, 91: 436–444. 10.1016/j.carbon.2015.05.020
    Popov V.N. Two-phonon Raman bands of bilayer graphene: Revisited Carbon N. Y. 2015 91 436 444 10.1016/j.carbon.2015.05.020
  18. [18] Shaalan, N.M., Ahmed, F., Kumar, S., Melaibari, A., Hasan, P.M.Z., Aljaafari, A., Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food waste, ACS Omega, 2020, 5: 30531–30537. 10.1021/acsomega.0c04396
    Shaalan N.M. Ahmed F. Kumar S. Melaibari A. Hasan P.M.Z. Aljaafari A. Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food waste ACS Omega 2020 5 30531 30537 10.1021/acsomega.0c04396
  19. [19] Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon N. Y., 2010, 48: 1592–1597. 10.1016/j.carbon.2009.12.057
    Lucchese M.M. Stavale F. Ferreira E.H.M. Vilani C. Moutinho M.V.O. Capaz R.B. Achete C.A. Jorio A. Quantifying ion-induced defects and Raman relaxation length in graphene Carbon N. Y. 2010 48 1592 1597 10.1016/j.carbon.2009.12.057
  20. Il Langford, J., Wilson, A.J.C., Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, 11: 102–113.
  21. [21] Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56: 978–982. 10.1103/PhysRev.56.978
    Patterson A.L. The Scherrer formula for X-ray particle size determination Phys. Rev. 1939 56 978 982 10.1103/PhysRev.56.978
  22. [22] Iqbal, M.W., Razzaq, S., Noor, N.A., Aftab, S., Afzal, A., Ullah, H., et al., Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr, J. Mater. Sci. Mater. Electron., 2022, 33: 12416–12425. 10.1007/s10854-022-08199-5
    Iqbal M.W. Razzaq S. Noor N.A. Aftab S. Afzal A. Ullah H. Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr J. Mater. Sci. Mater. Electron. 2022 33 12416 12425 10.1007/s10854-022-08199-5
  23. [23] Shaalan, N.M., Ahmed, F., Rashad, M., Kumar, S., Saber, O., Al-Naim, A.F., et al., Ceramic Ti/TiO2/AuNP Film with 1-D nanostructures for selfstanding supercapacitor electrodes, Crystals, 2022, 12: 791. 10.3390/cryst12060791
    Shaalan N.M. Ahmed F. Rashad M. Kumar S. Saber O. Al-Naim A.F. Ceramic Ti/TiO2/AuNP Film with 1-D nanostructures for selfstanding supercapacitor electrodes Crystals 2022 12 791 10.3390/cryst12060791
  24. [24] Lee, S., Kim, K., Yoon, J., Binder- and conductive additive-free laser-induced supercapacitors, NPG Asia Mater., 2020, 12: 1–15. 10.1038/s41427-020-0204-0
    Lee S. Kim K. Yoon J. Binder- and conductive additive-free laser-induced supercapacitors NPG Asia Mater. 2020 12 1 15 10.1038/s41427-020-0204-0
  25. [25] Clerici, F., Fontana, M., Bianco, S., Serrapede, M., Perrucci, F., Ferrero, S., et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes, ACS Appl. Mater. Interfaces, 2016, 8: 2–8. 10.1021/acsami.6b00808
    Clerici F. Fontana M. Bianco S. Serrapede M. Perrucci F. Ferrero S. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes ACS Appl. Mater. Interfaces 2016 8 2 8 10.1021/acsami.6b00808
  26. [26] Seol, M., Nam, I., Ribeiro, E.L., Segel, B., Lee, D., Palma, T., et al., All-printed in-plane supercapacitors by sequential additive manufacturing process, ACS Appl. Energy Mater., 2020, 3: 4965–4973. 10.1021/acsaem.0c00510
    Seol M. Nam I. Ribeiro E.L. Segel B. Lee D. Palma T. All-printed in-plane supercapacitors by sequential additive manufacturing process ACS Appl. Energy Mater. 2020 3 4965 4973 10.1021/acsaem.0c00510
  27. [27] Enoki, T., Endo, M., Suzuki, M., Graphite intercalation compounds and applications, Oxford Academic, New York, 2003. 10.1093/oso/9780195128277.001.0001
    Enoki T. Endo M. Suzuki M. Graphite intercalation compounds and applications Oxford Academic New York 2003 10.1093/oso/9780195128277.001.0001
  28. [28] Xue, M., Chen, G., Yang, H., Zhu, Y., Wang, D., He, J., et al., Superconductivity in potassium-doped few-layer graphene, J. Am. Chem. Soc., 2012, 134: 6536–6539. 10.1021/ja3003217
    Xue M. Chen G. Yang H. Zhu Y. Wang D. He J. Superconductivity in potassium-doped few-layer graphene J. Am. Chem. Soc. 2012 134 6536 6539 10.1021/ja3003217
  29. Zhai, Y.T., Chen, S., Yang, J.H., Xiang, H.J., Gong, X.G., Walsh, A., et al., Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation, Phys. Rev. B, 2011, 84: 75213.
  30. [30] Liu, Y., Xu, Z., Zhan, J., Li, P., Gao, C., Superb electrically conductive graphene fibers via doping strategy, Adv. Mater., 2016, 28: 7941. 10.1002/adma.201602444
    Liu Y. Xu Z. Zhan J. Li P. Gao C. Superb electrically conductive graphene fibers via doping strategy Adv. Mater. 2016 28 7941 10.1002/adma.201602444
  31. [31] Khan, M.F., Iqbal, M.Z., Iqbal, M.W., Iermolenko, V.M., Waseem Khalil, H.M., Nam, J., et al., Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current response. RSC Adv., 2015, 5: 50040–50046. 10.1039/C5RA08136J
    Khan M.F. Iqbal M.Z. Iqbal M.W. Iermolenko V.M. Waseem Khalil H.M. Nam J. Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current response RSC Adv. 2015 5 50040 50046 10.1039/C5RA08136J
  32. [32] Bin, J., Hsia, B., Yoo, J., Hyun, S., Carraro, C., Maboudian, R., et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon N. Y., 2014, 83: 144–151. 10.1016/j.carbon.2014.11.017
    Bin J. Hsia B. Yoo J. Hyun S. Carraro C. Maboudian R. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide Carbon N. Y. 2014 83 144 151 10.1016/j.carbon.2014.11.017
  33. [33] Liu, C., Liang, H., Wu, D., Lu, X., Wang, Q., Graphene-based supercapacitors: direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor (Adv. Electron. Mater. 7/2018), Adv. Electron. Mater., 2018, 4: 1870034. 10.1002/aelm.201870034
    Liu C. Liang H. Wu D. Lu X. Wang Q. Graphene-based supercapacitors: direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor (Adv. Electron. Mater. 7/2018) Adv. Electron. Mater. 2018 4 1870034 10.1002/aelm.201870034
  34. [34] Zhou, C., Hong, M., Yang, Y., Yang, C., Hu, N., Zhang, L., et al., Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors, J. Power Sources, 2019, 438: 227044. 10.1016/j.jpowsour.2019.227044
    Zhou C. Hong M. Yang Y. Yang C. Hu N. Zhang L. Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors J. Power Sources 2019 438 227044 10.1016/j.jpowsour.2019.227044
  35. [35] Khandelwal, M., Nguyen, A.P., Van Tran, C., In, J.B., Simple fabrication of Co3O4 nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors, RSC Adv., 2021, 11: 38547–38554. 10.1039/D1RA08048B
    Khandelwal M. Nguyen A.P. Van Tran C. In J.B. Simple fabrication of Co3O4 nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors RSC Adv. 2021 11 38547 38554 10.1039/D1RA08048B
  36. [36] Tiliakos, A., Tre, A.M.I., Tanas, E., Balan, A., Stamatin, I., Space-filling supercapacitor carpets: highly scalable fractal architecture for energy storage, J. Power Sources, 2018, 384: 145–155. 10.1016/j.jpowsour.2018.02.061
    Tiliakos A Tre A.M.I. Tanas E. Balan A. Stamatin I. Space-filling supercapacitor carpets: highly scalable fractal architecture for energy storage J. Power Sources 2018 384 145 155 10.1016/j.jpowsour.2018.02.061
  37. [37] Liu, Z., Hinaut, A., Peeters, S., Scherb, S., Meyer, E., Righi, M.C., et al., 2D KBr/graphene heterostructures – influence on work function and friction, Nanomaterials, 2022, 12: 1–10. 10.3390/nano12060968
    Liu Z. Hinaut A. Peeters S. Scherb S. Meyer E. Righi M.C. 2D KBr/graphene heterostructures – influence on work function and friction Nanomaterials 2022 12 1 10 10.3390/nano12060968
DOI: https://doi.org/10.2478/msp-2025-0007 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 67 - 79
Submitted on: Jan 26, 2025
Accepted on: Mar 5, 2025
Published on: Mar 31, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nagih M. Shaalan, Mohamad M. Ahmad, Osama Saber, Shalendra Kumar, Faheem Ahmed, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.