References
-
[1]
Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials, 2023, 16: 1551. 10.3390/MA16041551
Abadel A.A. Alghamdi H. Alharbi Y.R. Alamri M. Khawaji M. Abdulaziz M.A.M. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud Materials 2023 16 1551 10.3390/MA16041551
-
[2]
Alghannam, M., Albidah, A., Abbas, H., Al-Salloum, Y., Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete, Arab. J. Sci. Eng., 2021, 46: 4399–4408. 10.1007/S13369-020-04970-0/FIGURES/10
Alghannam M. Albidah A. Abbas H. Al-Salloum Y. Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete Arab. J. Sci. Eng. 2021 46 4399 4408 10.1007/S13369-020-04970-0/FIGURES/10
-
[3]
Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/J.JCLEPRO.2016.03.019
Zhuang X.Y. Chen L. Komarneni S. Zhou C.H. Tong D.S. Yang H.M. Fly ash-based geopolymer: Clean production, properties and applications J. Clean. Prod. 2016 125 253 267 10.1016/J.JCLEPRO.2016.03.019
- Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140
-
[5]
Shaikh, F.U.A., Vimonsatit, V., Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures, Fire Mater., 2016, 40: 335–350. 10.1002/FAM.2276
Shaikh F.U.A. Vimonsatit V. Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures Fire Mater. 2016 40 335 350 10.1002/FAM.2276
-
[6]
Hemra, K., Yamaguchi, S., Kobayashi, T., Aungkavattana, P., Jiemsirilers, S., Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin, Key Eng. Mater., 2018, 766: 157–163. 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157
Hemra K. Yamaguchi S. Kobayashi T. Aungkavattana P. Jiemsirilers S. Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin Key Eng. Mater. 2018 766 157 163 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157
-
[7]
Barbhuiya, S., Pang, E., Strength and microstructure of geopolymer based on fly ash and metakaolin, Materials, 2022, 15: 3732. 10.3390/MA15103732
Barbhuiya S. Pang E. Strength and microstructure of geopolymer based on fly ash and metakaolin Materials 2022 15 3732 10.3390/MA15103732
-
[8]
Zulkifly, K., Cheng-Yong, H., Yun-Ming, L., Bayuaji, R., Abdullah, MMAB, Bin Ahmad, S., et al., Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP), Materials (Basel), 2021, 14: 1973. 10.3390/MA14081973
Zulkifly K. Cheng-Yong H. Yun-Ming L. Bayuaji R. Abdullah MMAB Bin Ahmad S. Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP) Materials (Basel) 2021 14 1973 10.3390/MA14081973
-
[9]
Zhang, H.Y., Qiu, G.H., Kodur, V., Yuan, Z.S., Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure, Cem. Concr. Compos., 2020, 106: 103483. 10.1016/J.CEMCONCOMP.2019.103483
Zhang H.Y. Qiu G.H. Kodur V. Yuan Z.S. Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure Cem. Concr. Compos. 2020 106 103483 10.1016/J.CEMCONCOMP.2019.103483
-
[10]
Fahim Huseien, G., Mirza, J., Ismail, M., Ghoshal, S.K., Abdulameer Hussein, A., Geopolymer mortars as sustainable repair material: A comprehensive review, Renew. Sustain. Energy Rev., 2017, 80: 54–74. 10.1016/J.RSER.2017.05.076
Fahim Huseien G. Mirza J. Ismail M. Ghoshal S.K. Abdulameer Hussein A. Geopolymer mortars as sustainable repair material: A comprehensive review Renew. Sustain. Energy Rev. 2017 80 54 74 10.1016/J.RSER.2017.05.076
-
[11]
Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S., Mechanical and thermal properties of fly ash based geopolymers, Constr. Build. Mater., 2018, 160: 66–81. 10.1016/J.CONBUILDMAT.2017.11.023
Fan F. Liu Z. Xu G. Peng H. Cai C.S. Mechanical and thermal properties of fly ash based geopolymers Constr. Build. Mater. 2018 160 66 81 10.1016/J.CONBUILDMAT.2017.11.023
-
[12]
Junru, R., Huiguo, C., Ruixi, D., Tao, S., Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conf. Ser. Earth Environ. Sci., 2019, 267: 032056. 10.1088/1755-1315/267/3/032056
Junru R. Huiguo C. Ruixi D. Tao S. Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature IOP Conf. Ser. Earth Environ. Sci. 2019 267 032056 10.1088/1755-1315/267/3/032056
-
[13]
Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. 10.1016/J.CONBUILDMAT.2014.01.040
Zhang H.Y. Kodur V. Qi S.L. Cao L. Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications Constr. Build. Mater. 2014 55 38 45 10.1016/J.CONBUILDMAT.2014.01.040
-
[14]
Moradikhou, A.B., Esparham, A., Jamshidi Avanaki, M., Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete, Constr. Build. Mater., 2020, 251: 118965. 10.1016/J.CONBUILDMAT.2020.118965
Moradikhou A.B. Esparham A. Jamshidi Avanaki M. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete Constr. Build. Mater. 2020 251 118965 10.1016/J.CONBUILDMAT.2020.118965
-
[15]
Tahwia, A.M., Ellatief, M.A., Bassioni, G., Heniegal, A.M., Elrahman, M.A., Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic, J. Mater. Res. Technol., 2023, 23: 5681–5697. 10.1016/j.jmrt.2023.02.177
Tahwia A.M. Ellatief M.A. Bassioni G. Heniegal A.M. Elrahman M.A. Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic J. Mater. Res. Technol. 2023 23 5681 5697 10.1016/j.jmrt.2023.02.177
-
[16]
Assaedi, H., Alomayri, T., Siddika, A., Shaikh, F., Alamri, H., Subaer, S., et al., Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC), Materials, 2019, 12: 3624. 10.3390/MA12213624
Assaedi H. Alomayri T. Siddika A. Shaikh F. Alamri H. Subaer S. Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC) Materials 2019 12 3624 10.3390/MA12213624
-
[17]
Farhan, N.A., Sheikh, M.N., Hadi, M.N.S., Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber, J. Mater. Civ. Eng., 2018, 30: 04018142. 10.1061/(ASCE)MT.1943-5533.0002333
Farhan N.A. Sheikh M.N. Hadi M.N.S. Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber J. Mater. Civ. Eng. 2018 30 04018142 10.1061/(ASCE)MT.1943-5533.0002333
-
[18]
Wongruk, R., Songpiriyakij, S., Sukontasukkul, P., Chindaprasirt, P., Properties of steel fiber reinforced geopolymer, Key Eng. Mater., 2015, 659: 143–148. 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143
Wongruk R. Songpiriyakij S. Sukontasukkul P. Chindaprasirt P. Properties of steel fiber reinforced geopolymer Key Eng. Mater. 2015 659 143 148 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143
-
[19]
Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M., Uysal, M., Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites, Constr. Build. Mater., 2020, 235: 117502. 10.1016/J.CONBUILDMAT.2019.117502
Aygörmez Y. Canpolat O. Al-mashhadani M.M. Uysal M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites Constr. Build. Mater. 2020 235 117502 10.1016/J.CONBUILDMAT.2019.117502
-
[20]
Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage, Mater. Lett., 2022, 328: 133122. 10.1016/J.MATLET.2022.133122
Dhasindrakrishna K. Pasupathy K. Ramakrishnan S. Sanjayan J. Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage Mater. Lett. 2022 328 133122 10.1016/J.MATLET.2022.133122
- ASTM C604, Standard test method for true specific gravity of refractory materials by gas-comparison pycnometer, american society for testing and materials (ASTM), West Conshohocken, PA, USA 618, 2012
- ISO, ISO 834: Fire resistance tests-elements of building construction, International Organization for Standardization, Geneva, Switzerland, 1999
-
[23]
ASTM C39, Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, 2017, 10.1520/C0039_C0039M-17B
ASTM C39 Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken 2017 10.1520/C0039_C0039M-17B
- Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745
- Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355
- Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater, 2022, 317: 125910
-
[27]
Tadepalli, P.R., Mo, Y.L., Hsu, T.T.C., Vogel, J., Mechanical properties of steel fiber reinforced concrete beams, Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, ASCE proceeding, 2009, p. 1–10. 10.1061/41031(341)115
Tadepalli P.R. Mo Y.L. Hsu T.T.C. Vogel J. Mechanical properties of steel fiber reinforced concrete beams Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role ASCE proceeding 2009 p. 1 10 10.1061/41031(341)115
- Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392
- Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre, Constr. Build. Mater., 2020, 233: 117194
- Batista, R.P., Trindade, A.C.C., Borges, P.H.R., Silva, F.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77
- Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583
- Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash—slag geopolymer composites, Polymers (Basel), 2021, 14: 142
- Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167
- Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29
- Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991
- Malik, M., Bhattacharyya, S.K., Barai, S.V., Microstructural changes in concrete: Postfire scenario, J. Mater. Civ. Eng., 2021, 33: 04020462
-
[37]
Behnood, A., Ghandehari, M., Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Saf. J., 2009, 44: 1015–1022. 10.1016/j.firesaf.2009.07.001
Behnood A. Ghandehari M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures Fire Saf. J. 2009 44 1015 1022 10.1016/j.firesaf.2009.07.001
- Poon, C.-S., Azhar, S., Anson, M., Wong, Y.-L., Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cem. Concr. Res., 2001, 31: 1291–1300
-
[39]
Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C., Residual stress–strain relationship for concrete after exposure to high temperatures, Cem. Concr. Res., 2006, 36: 1999–2005. 10.1016/j.cemconres.2006.05.029
Chang Y.F. Chen Y.H. Sheu M.S. Yao G.C. Residual stress–strain relationship for concrete after exposure to high temperatures Cem. Concr. Res. 2006 36 1999 2005 10.1016/j.cemconres.2006.05.029
-
[40]
Li, M., Qian, C., Sun, W., Mechanical properties of high-strength concrete after fire, Cem. Concr. Res., 2004, 34: 1001–1005. 10.1016/j.cemconres.2003.11.007
Li M. Qian C. Sun W. Mechanical properties of high-strength concrete after fire Cem. Concr. Res. 2004 34 1001 1005 10.1016/j.cemconres.2003.11.007
- Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765
- Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071
- Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592
- Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frame, J. Struct. Eng., 2022, 148: 04022087
- Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640
- Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388
- Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437
- Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144
- Zheng, J., Qi, L., Zheng, Y., Zheng, L., Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete, J. Build. Eng., 2023, 80: 108161