Have a personal or library account? Click to login
Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures Cover

Compressive behavior of metakaolin–fly-ash-based geopolymer fiber-reinforced concrete after exposure to elevated temperatures

Open Access
|Dec 2024

References

  1. [1] Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials, 2023, 16: 1551. 10.3390/MA16041551
    Abadel A.A. Alghamdi H. Alharbi Y.R. Alamri M. Khawaji M. Abdulaziz M.A.M. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud Materials 2023 16 1551 10.3390/MA16041551
  2. [2] Alghannam, M., Albidah, A., Abbas, H., Al-Salloum, Y., Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete, Arab. J. Sci. Eng., 2021, 46: 4399–4408. 10.1007/S13369-020-04970-0/FIGURES/10
    Alghannam M. Albidah A. Abbas H. Al-Salloum Y. Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete Arab. J. Sci. Eng. 2021 46 4399 4408 10.1007/S13369-020-04970-0/FIGURES/10
  3. [3] Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/J.JCLEPRO.2016.03.019
    Zhuang X.Y. Chen L. Komarneni S. Zhou C.H. Tong D.S. Yang H.M. Fly ash-based geopolymer: Clean production, properties and applications J. Clean. Prod. 2016 125 253 267 10.1016/J.JCLEPRO.2016.03.019
  4. Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140
  5. [5] Shaikh, F.U.A., Vimonsatit, V., Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures, Fire Mater., 2016, 40: 335–350. 10.1002/FAM.2276
    Shaikh F.U.A. Vimonsatit V. Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures Fire Mater. 2016 40 335 350 10.1002/FAM.2276
  6. [6] Hemra, K., Yamaguchi, S., Kobayashi, T., Aungkavattana, P., Jiemsirilers, S., Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin, Key Eng. Mater., 2018, 766: 157–163. 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157
    Hemra K. Yamaguchi S. Kobayashi T. Aungkavattana P. Jiemsirilers S. Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin Key Eng. Mater. 2018 766 157 163 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157
  7. [7] Barbhuiya, S., Pang, E., Strength and microstructure of geopolymer based on fly ash and metakaolin, Materials, 2022, 15: 3732. 10.3390/MA15103732
    Barbhuiya S. Pang E. Strength and microstructure of geopolymer based on fly ash and metakaolin Materials 2022 15 3732 10.3390/MA15103732
  8. [8] Zulkifly, K., Cheng-Yong, H., Yun-Ming, L., Bayuaji, R., Abdullah, MMAB, Bin Ahmad, S., et al., Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP), Materials (Basel), 2021, 14: 1973. 10.3390/MA14081973
    Zulkifly K. Cheng-Yong H. Yun-Ming L. Bayuaji R. Abdullah MMAB Bin Ahmad S. Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP) Materials (Basel) 2021 14 1973 10.3390/MA14081973
  9. [9] Zhang, H.Y., Qiu, G.H., Kodur, V., Yuan, Z.S., Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure, Cem. Concr. Compos., 2020, 106: 103483. 10.1016/J.CEMCONCOMP.2019.103483
    Zhang H.Y. Qiu G.H. Kodur V. Yuan Z.S. Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure Cem. Concr. Compos. 2020 106 103483 10.1016/J.CEMCONCOMP.2019.103483
  10. [10] Fahim Huseien, G., Mirza, J., Ismail, M., Ghoshal, S.K., Abdulameer Hussein, A., Geopolymer mortars as sustainable repair material: A comprehensive review, Renew. Sustain. Energy Rev., 2017, 80: 54–74. 10.1016/J.RSER.2017.05.076
    Fahim Huseien G. Mirza J. Ismail M. Ghoshal S.K. Abdulameer Hussein A. Geopolymer mortars as sustainable repair material: A comprehensive review Renew. Sustain. Energy Rev. 2017 80 54 74 10.1016/J.RSER.2017.05.076
  11. [11] Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S., Mechanical and thermal properties of fly ash based geopolymers, Constr. Build. Mater., 2018, 160: 66–81. 10.1016/J.CONBUILDMAT.2017.11.023
    Fan F. Liu Z. Xu G. Peng H. Cai C.S. Mechanical and thermal properties of fly ash based geopolymers Constr. Build. Mater. 2018 160 66 81 10.1016/J.CONBUILDMAT.2017.11.023
  12. [12] Junru, R., Huiguo, C., Ruixi, D., Tao, S., Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conf. Ser. Earth Environ. Sci., 2019, 267: 032056. 10.1088/1755-1315/267/3/032056
    Junru R. Huiguo C. Ruixi D. Tao S. Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature IOP Conf. Ser. Earth Environ. Sci. 2019 267 032056 10.1088/1755-1315/267/3/032056
  13. [13] Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. 10.1016/J.CONBUILDMAT.2014.01.040
    Zhang H.Y. Kodur V. Qi S.L. Cao L. Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications Constr. Build. Mater. 2014 55 38 45 10.1016/J.CONBUILDMAT.2014.01.040
  14. [14] Moradikhou, A.B., Esparham, A., Jamshidi Avanaki, M., Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete, Constr. Build. Mater., 2020, 251: 118965. 10.1016/J.CONBUILDMAT.2020.118965
    Moradikhou A.B. Esparham A. Jamshidi Avanaki M. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete Constr. Build. Mater. 2020 251 118965 10.1016/J.CONBUILDMAT.2020.118965
  15. [15] Tahwia, A.M., Ellatief, M.A., Bassioni, G., Heniegal, A.M., Elrahman, M.A., Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic, J. Mater. Res. Technol., 2023, 23: 5681–5697. 10.1016/j.jmrt.2023.02.177
    Tahwia A.M. Ellatief M.A. Bassioni G. Heniegal A.M. Elrahman M.A. Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic J. Mater. Res. Technol. 2023 23 5681 5697 10.1016/j.jmrt.2023.02.177
  16. [16] Assaedi, H., Alomayri, T., Siddika, A., Shaikh, F., Alamri, H., Subaer, S., et al., Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC), Materials, 2019, 12: 3624. 10.3390/MA12213624
    Assaedi H. Alomayri T. Siddika A. Shaikh F. Alamri H. Subaer S. Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC) Materials 2019 12 3624 10.3390/MA12213624
  17. [17] Farhan, N.A., Sheikh, M.N., Hadi, M.N.S., Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber, J. Mater. Civ. Eng., 2018, 30: 04018142. 10.1061/(ASCE)MT.1943-5533.0002333
    Farhan N.A. Sheikh M.N. Hadi M.N.S. Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber J. Mater. Civ. Eng. 2018 30 04018142 10.1061/(ASCE)MT.1943-5533.0002333
  18. [18] Wongruk, R., Songpiriyakij, S., Sukontasukkul, P., Chindaprasirt, P., Properties of steel fiber reinforced geopolymer, Key Eng. Mater., 2015, 659: 143–148. 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143
    Wongruk R. Songpiriyakij S. Sukontasukkul P. Chindaprasirt P. Properties of steel fiber reinforced geopolymer Key Eng. Mater. 2015 659 143 148 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143
  19. [19] Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M., Uysal, M., Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites, Constr. Build. Mater., 2020, 235: 117502. 10.1016/J.CONBUILDMAT.2019.117502
    Aygörmez Y. Canpolat O. Al-mashhadani M.M. Uysal M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites Constr. Build. Mater. 2020 235 117502 10.1016/J.CONBUILDMAT.2019.117502
  20. [20] Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage, Mater. Lett., 2022, 328: 133122. 10.1016/J.MATLET.2022.133122
    Dhasindrakrishna K. Pasupathy K. Ramakrishnan S. Sanjayan J. Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage Mater. Lett. 2022 328 133122 10.1016/J.MATLET.2022.133122
  21. ASTM C604, Standard test method for true specific gravity of refractory materials by gas-comparison pycnometer, american society for testing and materials (ASTM), West Conshohocken, PA, USA 618, 2012
  22. ISO, ISO 834: Fire resistance tests-elements of building construction, International Organization for Standardization, Geneva, Switzerland, 1999
  23. [23] ASTM C39, Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, 2017, 10.1520/C0039_C0039M-17B
    ASTM C39 Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken 2017 10.1520/C0039_C0039M-17B
  24. Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745
  25. Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355
  26. Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater, 2022, 317: 125910
  27. [27] Tadepalli, P.R., Mo, Y.L., Hsu, T.T.C., Vogel, J., Mechanical properties of steel fiber reinforced concrete beams, Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, ASCE proceeding, 2009, p. 1–10. 10.1061/41031(341)115
    Tadepalli P.R. Mo Y.L. Hsu T.T.C. Vogel J. Mechanical properties of steel fiber reinforced concrete beams Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role ASCE proceeding 2009 p. 1 10 10.1061/41031(341)115
  28. Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392
  29. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre, Constr. Build. Mater., 2020, 233: 117194
  30. Batista, R.P., Trindade, A.C.C., Borges, P.H.R., Silva, F.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77
  31. Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583
  32. Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash—slag geopolymer composites, Polymers (Basel), 2021, 14: 142
  33. Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167
  34. Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29
  35. Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991
  36. Malik, M., Bhattacharyya, S.K., Barai, S.V., Microstructural changes in concrete: Postfire scenario, J. Mater. Civ. Eng., 2021, 33: 04020462
  37. [37] Behnood, A., Ghandehari, M., Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Saf. J., 2009, 44: 1015–1022. 10.1016/j.firesaf.2009.07.001
    Behnood A. Ghandehari M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures Fire Saf. J. 2009 44 1015 1022 10.1016/j.firesaf.2009.07.001
  38. Poon, C.-S., Azhar, S., Anson, M., Wong, Y.-L., Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cem. Concr. Res., 2001, 31: 1291–1300
  39. [39] Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C., Residual stress–strain relationship for concrete after exposure to high temperatures, Cem. Concr. Res., 2006, 36: 1999–2005. 10.1016/j.cemconres.2006.05.029
    Chang Y.F. Chen Y.H. Sheu M.S. Yao G.C. Residual stress–strain relationship for concrete after exposure to high temperatures Cem. Concr. Res. 2006 36 1999 2005 10.1016/j.cemconres.2006.05.029
  40. [40] Li, M., Qian, C., Sun, W., Mechanical properties of high-strength concrete after fire, Cem. Concr. Res., 2004, 34: 1001–1005. 10.1016/j.cemconres.2003.11.007
    Li M. Qian C. Sun W. Mechanical properties of high-strength concrete after fire Cem. Concr. Res. 2004 34 1001 1005 10.1016/j.cemconres.2003.11.007
  41. Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765
  42. Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071
  43. Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592
  44. Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frame, J. Struct. Eng., 2022, 148: 04022087
  45. Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640
  46. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388
  47. Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437
  48. Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144
  49. Zheng, J., Qi, L., Zheng, Y., Zheng, L., Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete, J. Build. Eng., 2023, 80: 108161
DOI: https://doi.org/10.2478/msp-2024-0049 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 180 - 196
Submitted on: Nov 29, 2024
Accepted on: Jan 10, 2025
Published on: Dec 31, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Yousef R. Alharbi, Aref A. Abadel, Ali S. Alqarni, Abobaker S. Binyahya, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.