Have a personal or library account? Click to login
Corrosion resistance of PPTA Ni-based hardfacing layers Cover

Corrosion resistance of PPTA Ni-based hardfacing layers

Open Access
|Dec 2024

References

  1. [1] Boulos, M.I., Fauchais, P., Pfender, E., Plasma torches for cutting, welding and PTA coating, Handbook of thermal plasmas, Springer International Publishing, 2017, pp. 1–83. 10.1007/978-3-319-12183-3_47-1
    Boulos M.I. Fauchais P. Pfender E. Plasma torches for cutting, welding and PTA coating Handbook of thermal plasmas Springer International Publishing 2017 pp. 1 83 10.1007/978-3-319-12183-3_47-1
  2. [2] Chen, L., Li, M., Wang, S., Guo, Z., Liang, B., Xue, J., et al., Microstructure and corrosion resistance of Ni-Al coating prepared by plasma transferred arc technology, J. Mater. Eng. Perform., 2023, 33: 1596–1614. 10.1007/s11665-023-08084-0
    Chen L. Li M. Wang S. Guo Z. Liang B. Xue J. Microstructure and corrosion resistance of Ni-Al coating prepared by plasma transferred arc technology J. Mater. Eng. Perform. 2023 33 1596 1614 10.1007/s11665-023-08084-0
  3. [3] Kalyankar, V.D., Wanare, S.P., Comparative investigations on microstructure and slurry abrasive wear resistance of NiCrBSi and NiCrBSi-WC composite hardfacings deposited on 304 stainless steel, Tribol. Ind., 2022, 44: 199–211. 10.24874/ti.1075.03.21.05
    Kalyankar V.D. Wanare S.P. Comparative investigations on microstructure and slurry abrasive wear resistance of NiCrBSi and NiCrBSi-WC composite hardfacings deposited on 304 stainless steel Tribol. Ind. 2022 44 199 211 10.24874/ti.1075.03.21.05
  4. [4] Suraj, R., Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steels, Mater. Today Proc., 2020, 42: 842–850. Elsevier Ltd. 10.1016/j.matpr.2020.11.592
    Suraj R. Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steels Mater. Today Proc. 2020 42 842 850 Elsevier Ltd. 10.1016/j.matpr.2020.11.592
  5. [5] Łatka, L., Biskup, P., Development in PTA surface modifications – a review, Adv. Mater. Sci., 2020, 20: 39–53. 10.2478/adms-2020-0009
    Łatka L. Biskup P. Development in PTA surface modifications – a review Adv. Mater. Sci. 2020 20 39 53 10.2478/adms-2020-0009
  6. [6] Gatto, A., Bassoli, E., Fornari, M., Plasma transferred arc deposition of powdered high performances alloys: Process parameters optimisation as a function of alloy and geometrical configuration, Surf. Coat. Technol., 2004, 187: 265–271. 10.1016/j.surfcoat.2004.02.013
    Gatto A. Bassoli E. Fornari M. Plasma transferred arc deposition of powdered high performances alloys: Process parameters optimisation as a function of alloy and geometrical configuration Surf. Coat. Technol. 2004 187 265 271 10.1016/j.surfcoat.2004.02.013
  7. [7] Szala, M., Walczak, M., Hejwowski, T., Factors influencing cavitation erosion of nicrsib hardfacings deposited by oxy-acetylene powder welding on grey cast iron, Adv. Sci. Technol. Res. J., 2021, 15: 376–386. 10.12913/22998624/143304
    Szala M. Walczak M. Hejwowski T. Factors influencing cavitation erosion of nicrsib hardfacings deposited by oxy-acetylene powder welding on grey cast iron Adv. Sci. Technol. Res. J. 2021 15 376 386 10.12913/22998624/143304
  8. [8] Appiah, A.N.S., Wyględacz, B., Matus, K., Reimanna, Ł, Bialas, O., Batalha, G.F., et al., Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology, Appl. Surf. Sci., 2024, 648: 159065. 10.1016/j.apsusc.2023.159065
    Appiah A.N.S. Wyględacz B. Matus K. Reimanna Ł Bialas O. Batalha G.F. Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology Appl. Surf. Sci. 2024 648 159065 10.1016/j.apsusc.2023.159065
  9. [9] Lachowicz, M., Metallurgical aspect of the corrosion resistance of 7000 series aluminum alloys, Mater. Sci. Pol., 2023, 41: 94–109. 10.2478/msp-2023-0041
    Lachowicz M. Metallurgical aspect of the corrosion resistance of 7000 series aluminum alloys Mater. Sci. Pol. 2023 41 94 109 10.2478/msp-2023-0041
  10. [10] Swietlicki, A., Walczak, M., Szala, M., Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel, Mater. Sci. Pol., 2022, 40: 135–151. 10.2478/msp-2022-0038
    Swietlicki A. Walczak M. Szala M. Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel Mater. Sci. Pol. 2022 40 135 151 10.2478/msp-2022-0038
  11. [11] Poloczek, T., Lont, A., Górka, J., Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders, Mater. Sci. Pol., 2022, 40: 14–27. 10.2478/msp-2022-0039
    Poloczek T. Lont A. Górka J. Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders Mater. Sci. Pol. 2022 40 14 27 10.2478/msp-2022-0039
  12. [12] Fan, L., Li, X.Y., Chen, H.Y., Du, H.L., Shi, L., Corrosion behavior of spherical chromium carbide reinforced NiCrBSi hardmetal coatings in sulphuric acid solution, Medziagotyra, 2022, 28: 301–308. 10.5755/j02.ms.29584
    Fan L. Li X.Y. Chen H.Y. Du H.L. Shi L. Corrosion behavior of spherical chromium carbide reinforced NiCrBSi hardmetal coatings in sulphuric acid solution Medziagotyra 2022 28 301 308 10.5755/j02.ms.29584
  13. [13] Appiah, A.N.S., Bialas, O., Żuk, M., Czupryński, A., Sasu, D.K., Adamiak, M., Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology, Mater. Sci. Pol., 2022, 40: 42–63. 10.2478/msp-2022-0033
    Appiah A.N.S. Bialas O. Żuk M. Czupryński A. Sasu D.K. Adamiak M. Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology Mater. Sci. Pol. 2022 40 42 63 10.2478/msp-2022-0033
  14. [14] Rojas, J.G.M., Ghasri-Khouzani, M., Wolfe, T., Fleck, B., Henein, H., Qureshi, A.J., Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentation, Int. J. Adv. Manuf. Technol., 2021, 113: 1451–1468. 10.1007/s00170-020-06388-2
    Rojas J.G.M. Ghasri-Khouzani M. Wolfe T. Fleck B. Henein H. Qureshi A.J. Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentation Int. J. Adv. Manuf. Technol. 2021 113 1451 1468 10.1007/s00170-020-06388-2
  15. [15] Sreevidya, N., Rani, R., Das, C.R., Mathews, T., Albert, S.K., Vasudevan, M., et al., Effect of dilution on high-temperature and high-vacuum tribological behaviour of Ni-Cr-B-Si hardfaced coating, Trans. Indian. Inst. Met., 2023, 76: 3127–3136. 10.1007/s12666-023-02963-9
    Sreevidya N. Rani R. Das C.R. Mathews T. Albert S.K. Vasudevan M. Effect of dilution on high-temperature and high-vacuum tribological behaviour of Ni-Cr-B-Si hardfaced coating Trans. Indian. Inst. Met. 2023 76 3127 3136 10.1007/s12666-023-02963-9
  16. [16] Balanovskii, A.E., Chieu, N.V., The influence of chromium carbide on corrosion resistance of plasma NiCrBSi coating, Prot. Met. Phys. Chem. Surf., 2022, 58: 764–771. 10.1134/S2070205122040074
    Balanovskii A.E. Chieu N.V. The influence of chromium carbide on corrosion resistance of plasma NiCrBSi coating Prot. Met. Phys. Chem. Surf. 2022 58 764 771 10.1134/S2070205122040074
  17. [17] Ortiz, A., García, A., Cadenas, M., Fernández, M.R., Cuetos, J.M., WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt% WC, Surf. Coat. Technol., 2017, 324: 298–306. 10.1016/j.surfcoat.2017.05.086
    Ortiz A. García A. Cadenas M. Fernández M.R. Cuetos J.M. WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt% WC Surf. Coat. Technol. 2017 324 298 306 10.1016/j.surfcoat.2017.05.086
  18. [18] Qiao, L., Wu, Y., Hong, S., Long, W., Cheng, J., Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying, Ceram. Int., 2021, 47: 1829–1836. 10.1016/j.ceramint.2020.09.009
    Qiao L. Wu Y. Hong S. Long W. Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying Ceram. Int. 2021 47 1829 1836 10.1016/j.ceramint.2020.09.009
  19. [19] Huang, S., Sun, D., Xu, D., Wang, W., Xu, H., Microstructures and properties of NiCrBSi/WC biomimetic coatings prepared by plasma spray welding, J. Bionic Eng., 2015, 12: 592–603. 10.1016/S1672-6529(14)60149-9
    Huang S. Sun D. Xu D. Wang W. Xu H. Microstructures and properties of NiCrBSi/WC biomimetic coatings prepared by plasma spray welding J. Bionic Eng. 2015 12 592 603 10.1016/S1672-6529(14)60149-9
  20. Pierson, H.O., Handbook of chemical vapor deposition: Principles, technology, and applications, Noyes Publications, Westwood, New Jersey, USA, 1999
  21. [21] Koczkodaj, S., Mizera, J., Moszczynska, D., Zdunek, J., Plocinska, M., Szpyrka, J., et al., Comparison of the performance properties of commercially produced roller cone bit coatings, Mater. Sci. Pol., 2023, 41: 110–123. 10.2478/msp-2023-0008
    Koczkodaj S. Mizera J. Moszczynska D. Zdunek J. Plocinska M. Szpyrka J. Comparison of the performance properties of commercially produced roller cone bit coatings Mater. Sci. Pol. 2023 41 110 123 10.2478/msp-2023-0008
  22. [22] Ji, J.B., Tong, J., Corrosion rate and mechanical properties of 316L stainless steel wires in different corrosive conditions, Appl. Mech. Mater., 2014, 441: 48–52. 10.4028/www.scientific.net/AMM.441.48
    Ji J.B. Tong J. Corrosion rate and mechanical properties of 316L stainless steel wires in different corrosive conditions Appl. Mech. Mater. 2014 441 48 52 10.4028/www.scientific.net/AMM.441.48
  23. [23] Cai, B., Liu, Y., Tian, X., Wang, F., Li, H., Ji, R., An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater, Corros. Sci., 2010, 52: 3235–3242. 10.1016/j.corsci.2010.05.040
    Cai B. Liu Y. Tian X. Wang F. Li H. Ji R. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater Corros. Sci. 2010 52 3235 3242 10.1016/j.corsci.2010.05.040
  24. Jin, L., Guo, Y., Liu, F., Electrochemical and stress corrosion behaviors of 316L stainless steel in the borate solution, Int. J. Electrochem. Sci., 2020, 15: 4421–4433
  25. [25] Szymańska, A., Sikorski, K., Kazior, J., The structure of nanocrystalline stainless steel powders obtained by ball milling and duplex stainless steel formed by their sintering, Solid. State Phenom., Trans Tech Publications Ltd 2005, 101–102: 135–138. 10.4028/www.scientific.net/ssp.101-102.135
    Szymańska A. Sikorski K. Kazior J. The structure of nanocrystalline stainless steel powders obtained by ball milling and duplex stainless steel formed by their sintering Solid. State Phenom. Trans Tech Publications Ltd 2005 101–102 135 138 10.4028/www.scientific.net/ssp.101-102.135
  26. Acar, A.N., Ekşi, A.K., Ekicibil, A., Effect of pressure on the magnetic and structural properties of X2CrNiMo17-12-2 austenitic stainless steel prepared by powder metallurgy method, J. Mol. Struct., 2019, 1198: 126876
  27. Głowacka, M., Łabanowski, J., Inżynieria powierzchni, Wydawnictwo PWSZ, Elbląg, 2014 (in Polish)
  28. [28] Pan, L.H., Yang, R.C., Researched on the corrosion resistance of Ni-Cr-Mo-Cu alloy to aqueous change with the APF in regular way: An approach of quantum electrochemistry, Appl. Mech. Mater., 2011, 55–57: 378–381. Trans Tech Publications Ltd. 10.4028/www.scientific.net/AMM.55-57.378
    Pan L.H. Yang R.C. Researched on the corrosion resistance of Ni-Cr-Mo-Cu alloy to aqueous change with the APF in regular way: An approach of quantum electrochemistry Appl. Mech. Mater. 2011 55–57 378 381 Trans Tech Publications Ltd. 10.4028/www.scientific.net/AMM.55-57.378
  29. [29] Yang, J., Zou, H., Li, X., Chen, J., Lv, L., Wen, Y., et al., Effects of Cr content on the corrosion behavior of porous Ni-Cr-Mo-Cu alloys in H3PO4 solution, Mater. Res. Express, 2021, 8: 096522. 10.1088/2053-1591/ac1d1a
    Yang J. Zou H. Li X. Chen J. Lv L. Wen Y. Effects of Cr content on the corrosion behavior of porous Ni-Cr-Mo-Cu alloys in H3PO4 solution Mater. Res. Express 2021 8 096522 10.1088/2053-1591/ac1d1a
  30. [30] Yang, J., Li, X., Lv, L., Liu, X., Zou, H., Zhang, C., et al., Porous Ni-Cr-Mo-Cu alloys fabricated by elemental powder reactive synthesis, Mater. Res. Express, 2021, 8: 096527. 10.1088/2053-1591/ac1f49
    Yang J. Li X. Lv L. Liu X. Zou H. Zhang C. Porous Ni-Cr-Mo-Cu alloys fabricated by elemental powder reactive synthesis Mater. Res. Express 2021 8 096527 10.1088/2053-1591/ac1f49
  31. [31] Li, X., Yang, J., Feng, X., Hu, Y., Zou, H., Zhang, C., et al., Electrochemical performance of porous Ni-Cr-Mo-Cu alloys for hydrogen evolution reactions in alkali solution, Mater. Res. Express, 2020, 7: 095505. 10.1088/2053-1591/abb562
    Li X. Yang J. Feng X. Hu Y. Zou H. Zhang C. Electrochemical performance of porous Ni-Cr-Mo-Cu alloys for hydrogen evolution reactions in alkali solution Mater. Res. Express 2020 7 095505 10.1088/2053-1591/abb562
  32. https://www.swedishmesteel.com/files/mr/Durmat%20PTA%20Laser%20Thermal%20Spray.pdf, Durum Wear Protection GMBH, 2024
  33. PN-EN 10025-2, Hot rolled products of structural steels, Warszawa, Polski Komitet Normalizacyjny, 2019
  34. KT 106 K i O przed KMM. PN-EN ISO 17475:2010, Korozja metali i stopów- Elektrochemiczne metody badań- Wytyczne wykonywania potencjostycznych i potencjodynamicznych pomiarów polaryzacyjnych, Poland, 2010
  35. [35] Haribaskar, R., Kumar, T.S., The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L, Phys. Scr., 2024, 99: 055929. 10.1088/1402-4896/ad385a
    Haribaskar R. Kumar T.S. The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L Phys. Scr. 2024 99 055929 10.1088/1402-4896/ad385a
  36. [36] Matějíček, J., Vosáhlo, J., Rohan, P., PTA deposition of W + Cu composites for fusion reactors. Metal 2021 - 30th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, TANGER Ltd., 2021, pp. 1013–1022. 10.37904/metal.2021.4249
    Matějíček J. Vosáhlo J. Rohan P. PTA deposition of W + Cu composites for fusion reactors. Metal 2021 - 30th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, TANGER Ltd. 2021 pp. 1013–1022 10.37904/metal.2021.4249
  37. [37] Takano, E.H., de Queiroz, D., D’Oliveira, A.S.C.M., Evaluation of processing parameters on pta hardfacing surfaces, Weld. Int., 2010, 24: 241–248. 10.1080/09507110902843974
    Takano E.H. de Queiroz D. D’Oliveira A.S.C.M. Evaluation of processing parameters on pta hardfacing surfaces Weld. Int. 2010 24 241 248 10.1080/09507110902843974
  38. Yan, M., Zhu, W.Z., Surface remelting of Ni-Cr-B-Si cladding with a micro-beam plasma arc, Surf. Coat. Technol., 1997, 92: 157–163.
  39. [39] Farahpour, P., Edris, H., Kheirikhah, M.M., Mirrahimi, A.H., Influence of high velocity oxy-fuel parameters on the corrosion resistance of NiCr coatings, Proc. Inst. Mech. Eng., Part L, 2013, 227: 318–335. 10.1177/1464420712459993
    Farahpour P. Edris H. Kheirikhah M.M. Mirrahimi A.H. Influence of high velocity oxy-fuel parameters on the corrosion resistance of NiCr coatings Proc. Inst. Mech. Eng., Part L 2013 227 318 335 10.1177/1464420712459993
  40. [40] Lisiecki, A., Kurc-Lisiecka, A., Laser cladding of NiCrBSi/WC + W2C composite coatings, Coatings, 2023, 13: 576. 10.3390/coatings13030576
    Lisiecki A. Kurc-Lisiecka A. Laser cladding of NiCrBSi/WC + W2C composite coatings Coatings 2023 13 576 10.3390/coatings13030576
  41. [41] Matějíček, J., Antoš, J., Rohan, P., W + Cu and W + Ni composites and fgms prepared by plasma transferred arc cladding, Materials, 2021, 14: 1–11. 10.3390/ma14040789
    Matějíček J. Antoš J. Rohan P. W + Cu and W + Ni composites and fgms prepared by plasma transferred arc cladding Materials 2021 14 1 11 10.3390/ma14040789
  42. [42] Makarov, A.V., Soboleva, N.N., Malygina, I.Y., Osintseva, A.L., Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment, Met. Sci. Heat. Treat., 2015, 57: 161–168. 10.1007/s11041-015-9856-8
    Makarov A.V. Soboleva N.N. Malygina I.Y. Osintseva A.L. Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment Met. Sci. Heat. Treat. 2015 57 161 168 10.1007/s11041-015-9856-8
  43. [43] Makarov, A., Korobov, Y., Soboleva, N., Khudorozhkova, Y., Vopneruk, A., Balu, P., et al., Wear-resistant nickel-based laser clad coatings for high-temperature applications, Lett. Mater., 2019, 9: 470–474. 10.22226/2410-3535-2019-4-470-474
    Makarov A. Korobov Y. Soboleva N. Khudorozhkova Y. Vopneruk A. Balu P. Wear-resistant nickel-based laser clad coatings for high-temperature applications Lett. Mater. 2019 9 470 474 10.22226/2410-3535-2019-4-470-474
  44. [44] Sourmail, T., Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001, 17: 1–14. 10.1179/026708301101508972
    Sourmail T. Precipitation in creep resistant austenitic stainless steels Mater. Sci. Technol. 2001 17 1 14 10.1179/026708301101508972
  45. [45] Srinivasan, N., Sensitization of austenitic stainless steels: Current developments, trends, and future directions, Metall. Microstruct. Anal., 2021, 10: 133–147. 10.1007/s13632-021-00724-y
    Srinivasan N. Sensitization of austenitic stainless steels: Current developments, trends, and future directions Metall. Microstruct. Anal. 2021 10 133 147 10.1007/s13632-021-00724-y
  46. [46] Kaur, H., Singh, H., Improving pitting corrosion resistance of AISI 316L weld overlays via inconel 82 additions, Mater. Today Proc., 2022, 62: A7–A13. 10.1016/j.matpr.2022.08.472
    Kaur H. Singh H. Improving pitting corrosion resistance of AISI 316L weld overlays via inconel 82 additions Mater. Today Proc. 2022 62 A7 A13 10.1016/j.matpr.2022.08.472
  47. [47] Parvathavarthini, N. Sensitization and testing for intergranular corrosion. Corrosion of austenitic stainless steels, Elsevier, Cambridge, England, 2002, pp. 117–138. 10.1533/9780857094018.139
    Parvathavarthini N. Sensitization and testing for intergranular corrosion. Corrosion of austenitic stainless steels Elsevier Cambridge, England 2002 pp. 117 138 10.1533/9780857094018.139
  48. [48] Di Schino, A., Testani, C., Corrosion behavior and mechanical properties of AISI 316 stainless steel Clad Q235 plate, Metals (Basel), 2020, 10: 552. 10.3390/met10040552
    Di Schino A. Testani C. Corrosion behavior and mechanical properties of AISI 316 stainless steel Clad Q235 plate Metals (Basel) 2020 10 552 10.3390/met10040552
  49. [49] Padilha, A.F., Rios, P.R., Decomposition of austenite in austenitic stainless steels, ISIJ Int., 2002, 42: 325–327. 10.2355/isijinternational.42.325
    Padilha A.F. Rios P.R. Decomposition of austenite in austenitic stainless steels ISIJ Int. 2002 42 325 327 10.2355/isijinternational.42.325
  50. [50] Gadhikar, A.A., Sharma, C.P., Goel, D.B., Sharma, A., Effect of heat treatment on carbides in 23-8-N steel, Met. Sci. Heat. Treat., 2011, 53: 293–298. 10.1007/s11041-011-9385-z
    Gadhikar A.A. Sharma C.P. Goel D.B. Sharma A. Effect of heat treatment on carbides in 23-8-N steel Met. Sci. Heat. Treat. 2011 53 293 298 10.1007/s11041-011-9385-z
  51. [51] de Souza Silva, E.M.F., da Fonseca, G.S., Ferreira, E.A., Microstructural and selective dissolution analysis of 316L austenitic stainless steel, J. Mater. Res. Technol., 2021, 15: 4317–4329. 10.1016/j.jmrt.2021.10.009
    de Souza Silva E.M.F. da Fonseca G.S. Ferreira E.A. Microstructural and selective dissolution analysis of 316L austenitic stainless steel J. Mater. Res. Technol. 2021 15 4317 4329 10.1016/j.jmrt.2021.10.009
  52. [52] Souto, J.I.V.d., Ferreira, S.D., Lima, J.S.d., Castro, W.B.d., Grassi, E.N.D., Santos, T.F.d.A., Effect of GMAW Process parameters and heat input on weld overlay of austenitic stainless steel 316L-Si, Soldag. Inspeção, 2023, 28: e2809. 10.1590/0104-9224/si28.09
    Souto J.I.V.d. Ferreira S.D. Lima J.S.d. Castro W.B.d. Grassi E.N.D. Santos T.F.d.A. Effect of GMAW Process parameters and heat input on weld overlay of austenitic stainless steel 316L-Si Soldag. Inspeção 2023 28 e2809 10.1590/0104-9224/si28.09
  53. [53] Anita, T., Shaikh, H., Khatak, H.S., Amarendra, G., Effect of heat input on the stress corrosion cracking behavior of weld metal of nitrogen-added AISI Type 316 stainless steel, Corrosion, 2004, 60: 873–880. 10.5006/1.3287869
    Anita T. Shaikh H. Khatak H.S. Amarendra G. Effect of heat input on the stress corrosion cracking behavior of weld metal of nitrogen-added AISI Type 316 stainless steel Corrosion 2004 60 873 880 10.5006/1.3287869
  54. [54] Fang, Z., Wu, Y., Zhu, R., Stress corrosion cracking of type 304 stainless steel weldments in the active state, Corrosion, 1994, 50: 171–175. 10.5006/1.3293508
    Fang Z. Wu Y. Zhu R. Stress corrosion cracking of type 304 stainless steel weldments in the active state Corrosion 1994 50 171 175 10.5006/1.3293508
  55. [55] Lachowicz, M., Nowak, D., Lachowicz, M., Korozja połączenia spawanego wykonanego na stali austenitycznej X2CrNi18-9 wywołana występowaniem fazy sigma, Prz. Spaw. Weld. Technol. Rev., 2017, 89:22–26. 10.26628/ps.v89i8.800
    Lachowicz M. Nowak D. Lachowicz M. Korozja połączenia spawanego wykonanego na stali austenitycznej X2CrNi18-9 wywołana występowaniem fazy sigma Prz. Spaw. Weld. Technol. Rev. 2017 89 22 26 10.26628/ps.v89i8.800
  56. [56] Walczak, M., Szala, M., Okuniewski, W., Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel, Materials, 2022, 15: 9000. 10.3390/ma15249000
    Walczak M. Szala M. Okuniewski W. Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel Materials 2022 15 9000 10.3390/ma15249000
  57. [57] Rutkowska-Gorczyca, M., Podrez-Radziszewska, M., Kajtoch, J., Corrosion resistance and microstructure of steel aisi 316L after cold plastic deformation, Metall. Foundry Eng., 2009, 35: 35. 10.7494/mafe.2009.35.1.35
    Rutkowska-Gorczyca M. Podrez-Radziszewska M. Kajtoch J. Corrosion resistance and microstructure of steel aisi 316L after cold plastic deformation Metall. Foundry Eng. 2009 35 35 10.7494/mafe.2009.35.1.35
  58. [58] Lachowicz, M.M., Lachowicz, M.B., The mechanism of corrosion of steel 304L in the presence of copper in industrial installations/Mechanizm korozji stali austenitycznej 304L W obecności miedzi w instalacjach przemysłowych, Arch. Metall. Mater., 2015, 60: 2657–2662. 10.1515/amm-2015-0429
    Lachowicz M.M. Lachowicz M.B. The mechanism of corrosion of steel 304L in the presence of copper in industrial installations/Mechanizm korozji stali austenitycznej 304L W obecności miedzi w instalacjach przemysłowych Arch. Metall. Mater. 2015 60 2657 2662 10.1515/amm-2015-0429
  59. [59] Saadi, S.A., Yi, Y., Cho, P., Jang, C., Beeley, P., Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution, Corros. Sci., 2016, 111: 720–727. 10.1016/j.corsci.2016.06.011
    Saadi S.A. Yi Y. Cho P. Jang C. Beeley P. Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution Corros. Sci. 2016 111 720 727 10.1016/j.corsci.2016.06.011
  60. [60] Yi, Y., Cho, P., Al Zaabi, A., Addad, Y., Jang, C., Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution, Corros. Sci., 2013, 74: 92–97. 10.1016/j.corsci.2013.04.028
    Yi Y. Cho P. Al Zaabi A. Addad Y. Jang C. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution Corros. Sci. 2013 74 92 97 10.1016/j.corsci.2013.04.028
  61. [61] Riley, A.M., Wells, D.B., Williams, D.E., Initiation events for pitting corrosion of stainless steel?, Corros. Sci., 1991, 32: 1307–1313. 10.1016/0010-938X(91)90050-Y
    Riley A.M. Wells D.B. Williams D.E. Initiation events for pitting corrosion of stainless steel? Corros. Sci. 1991 32 1307 1313 10.1016/0010-938X(91)90050-Y
  62. [62] Gu, R., Trisnanto, S.R., Brochu, M., Omanovic, S., Cyclic potentiodynamic passivation of 316L stainless steels of different crystallographic orientation produced by laser powder bed fusion: Towards the improvement of corrosion resistance, Can. J. Chem. Eng., 2024, 102: 196–202. 10.1002/cjce.25050
    Gu R. Trisnanto S.R. Brochu M. Omanovic S. Cyclic potentiodynamic passivation of 316L stainless steels of different crystallographic orientation produced by laser powder bed fusion: Towards the improvement of corrosion resistance Can. J. Chem. Eng. 2024 102 196 202 10.1002/cjce.25050
  63. Lachowicz, M., Elektrochemiczne i mikrostrukturalne aspekty rozwoju niszczenia korozyjnego części maszyn i urządzeń, Instytut Technologii Eksploatacji, Wydawnictwo Naukowe (in Polish), 2020
  64. [64] Lachowicz, M.M., Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a review, Mater. Sci. Pol., 2023, 41: 159–180. 10.2478/msp-2023-0041
    Lachowicz M.M. Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a review Mater. Sci. Pol. 2023 41 159 180 10.2478/msp-2023-0041
DOI: https://doi.org/10.2478/msp-2024-0040 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 66 - 78
Submitted on: Aug 8, 2024
Accepted on: Nov 13, 2024
Published on: Dec 31, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Monika Górnik, Marzena Lachowicz, Leszek Łatka, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.