Have a personal or library account? Click to login
Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments Cover

Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments

Open Access
|Nov 2024

References

  1. Totonchi, A., Ansaripour, A., Shivaei, S., Effect of different arrangements of CFRP wraps on the axial stress–strain behaviour of confined concrete cylinders: Experimental study and numerical modelling, Iran. J. Sci. Technol. Trans. Civ. Eng., 2020, 44(4): 1087–1100
  2. Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592
  3. Shaikh, F.U.A., Vimonsatit, V., Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures, Fire Mater., 2016, 40(2): 335–350
  4. Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26(14): 6746–6765
  5. Li, Q., Yuan, G., Shu, Q., Effects of heating/cooling on recovery of strength and carbonation resistance of fire-damaged concrete, Mag. Concr. Res., 2014, 66(18): 925–936
  6. Kee, S.-H., Kang, J.W., Choi, B.-J., Kwon, J., Candelaria, M.D., Evaluation of static and dynamic residual mechanical properties of heat-damaged concrete for nuclear reactor auxiliary buildings in korea using elastic wave velocity measurements, Materials, 2019, 12(17): 2695
  7. Choe, G., Kim, G., Gucunski, N., Lee, S., Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column, Constr. Build. Mater., 2015, 86: 159–168
  8. Gong, W., Ueda, T., Basic study on chloride-induced steel corrosion in concrete subjected to heating up to 300° C, Material., 2018, 67(7): 738–745
  9. Khaliq, W., Kodur, V., Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures, Cem. Concr. Res., 2011, 41(11): 1112–1122
  10. Novák, J., Kohoutková, A.J.P.E., Fire response of hybrid fiber reinforced concrete to high temperature, Procedia Eng., 2017, 172: 784–790
  11. Peng, G.-F., Bian, S.-H., Guo, Z.-Q., Zhao, J., Peng, X.-L., Jiang, Y.-C., Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures, Constr. Build. Mater., 2008, 22(5): 948–955
  12. Vairagade, V.S., Dhale, S.A., Hybrid fibre reinforced concrete–a state of the art review, Hybrid. Adv., 2023, 3: 100035
  13. Abadel, A., Abbas, H., Almusallam, T., Al-Salloum, Y., Siddiqui, N., Mechanical properties of hybrid fibre-reinforced concrete–analytical modelling and experimental behaviour, Mag. Concr. Res., 2016, 68(16): 823–843
  14. Selvi, M.T., Thandavamoorthy, T.S., Load-deflection characteristics of steel, polypropylene and hybrid fiber reinforced concrete beams, Arch. Civ. Eng., 2015, 61(1): 59–72
  15. Marcalikova, Z., Mateckova, P., Racek, M., Bujdos, D., Study on shear behavior of steel fiber reinforced concrete small beams, Procedia Struct. Integr., 2020, 28: 957–963
  16. Brandt, A.M. Cement-based composites: materials, mechanical properties and performance, CRC Press, London, 2005
  17. Sharma, A., Reddy, G.R., Varshney, L., Bharathkumar, H., Vaze, K.K., Ghosh, A.K., et al., Experimental investigations on mechanical and radiation shielding properties of hybrid lead–steel fiber reinforced concrete, Nucl. Eng. Des., 2009, 239(7): 1180–1185
  18. Shu, X., Graham, R.K., Huang, B., Burdette, E.G., Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar, Mater. Des. (1980-2015), 2015, 65: 1222–1228
  19. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre, Constr. Build. Mater., 2020, 233: 117194
  20. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Zeyad, A.M., Altheeb, A., Alghamdi, H., Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber, Structures, 33: 4421–4432
  21. Abadel, A., Abbas, H., Almusallam, T., Alshaikh, I.M.H., Khawaji, M., Alghamdi, H., et al., Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams, Case Stud. Constr. Mater., 2022, 16: e01103
  22. Abadel, A.A., Retrofitting of heat-damaged fiber-reinforced concrete cylinders using welded wire mesh configurations, Mater. Sci. Poland, 2024, 42(2): 52–69
  23. Ali Ahmed, C., Si Salem, A., Ait Taleb, S., Ait Tahar, K., Experimental behavior and reliability of predamaged concrete columns externally repaired with FRP spiral strips under axial compression, World J. Eng., 2024, 21(1): 115–126
  24. Varma, D.A., Joseph, L., Madhavan, M.K., Jayanarayanan, K., Pegoretti, A., Strength, durability and finite element analysis of hybrid jute/basalt fiber reinforced polymer confined concrete column under axial compression, Results Eng., 2024, 22: 102281
  25. Dushimimana, A., Vassilopoulos, A.P., Sena-Cruz, J., Pereira, J.M., Correia, L., Cabral-Fonseca, S., et al., Behavior of CFRP composites and epoxy adhesives after long-term exposure to outdoor and laboratory-controlled environments, Constr. Build. Mater., 2024, 438: 137201
  26. Das Chandra, S., Nizam, Md.E.H., Applications of fiber reinforced polymer composites (FRP) in civil engineering, Int. J. Adv. Struct. Geotech. Eng., 2014, 3(3): 299–309
  27. Rahman, A., Mallick, M., Ghosh, S., Experimental behavior of FRP confined concrete cylinder wrapped by two different FRPs, J. Mater. Sci. Res., 2018, 7(2): 18–25
  28. Wang, Z., Wang, D., Smith, S.T., Lu, D., CFRP-confined square RC columns. I: experimental investigation, J. Compos. Constr., 2012, 16(2): 150–160
  29. Xiang, Z., Tong, Y., Niu, J., Yin, L., Zhou, J., Experimental study on the axial compressive mechanical performance of concrete short columns jointly confined with CC and CFRP after sulfate attack, J. Build. Eng., 2024, 95: 110342
  30. ASTM, D3039/D3039M-08, Standard test method for tensile properties of polymer matrix composite materials, American Society for Testing and Materials, West Conshohocken, PA, 2008
  31. ISO, 834: fire resistance tests-elements of building construction, Geneva, Switzerland, International Organization for Standardization, 1999
  32. ASTM, C39, Standard test method for compressive strength of cylindrical concrete specimens, standard, West Conshohocken, ASTM International, 2012
  33. Al-Salloum, Y.A., Almusallam, T.H., Elsanadedy, H.M., Iqbal, R.A., Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques, Constr. Build. Mater., 2016, 115: 345–361
  34. Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51(3): 333–355
  35. Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frame, J. Struct. Eng., 2022, 148(7): 04022087
  36. Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640
  37. Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 37: 379–388
  38. Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: comparison with welded-wire mesh steel confinement, Structures, 45: 126–144
  39. ABAQUS, User assistance, Rhode Island, USA, Dassault Systemes Simulia Corporation, Providence, 2019
  40. Rackauskaite, E., Kotsovinos, P., Rein, G.J.F.S.J., Model parameter sensitivity and benchmarking of the explicit dynamic solver of LS-DYNA for structural analysis in case of fire, Fire Saf. J., 2017, 90: 123–138
  41. Alshaikh, I.M.H., Abadel, A.A., Tuladhar, R., Alwathaf, A.H., Nehdi, M.L., Progressive collapse resistance of post-fire cellular beam-column substructures with various web-opening shapes, Structures, 55: 1874–1893
  42. Ma, Z., Havula, J., Heinisuo, M., Structural fire analysis of simple steel structures by using LS-DYNA explicit solver, Rakenteiden Mekaniikka, 2019, 52(1): 1–22
  43. Li, Z., Zhu, Y.F., Zhang, H., Liu, Y., Yao, Y., Progressive collapse resistance of self-resilient composite frames under fire conditions, Structures, 2024, 68: 107127
  44. Eurocode-2, Design of concrete structures-part 1-2: General rules-structural fire design, European Committee for Standardization, Brussels, 2004
  45. Hu, H.-T., Huang, C.-S., Wu, M.-H., Wu, Y.-M., Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect, J. Struct. Eng., 2003, 129(10): 1322–1329
  46. Sadeghian, P., Rahai, A.R., Ehsani, M.R., Numerical modeling of concrete cylinders confined with CFRP composites, J. Reinf. Plast. Compos., 2008, 27(12): 1309–1321
  47. Al-Mekhlafi, G.M., Al-Osta, M.A., Sharif, A.M., Behavior of eccentrically loaded concrete-filled stainless steel tubular stub columns confined by CFRP composites, Eng. Struct., 2020, 205: 110113
  48. Hany, N.F., Hantouche, E.G., Harajli, M.H., Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity, Eng. Struct., 2016, 125: 1–14
  49. Sharif, A.M., Al-Mekhlafi, G.M., Al-Osta, M.A., Structural performance of CFRP-strengthened concrete-filled stainless steel tubular short columns, Eng. Struct., 2019, 183: 94–109
  50. Hashin, Z., Failure criteria for unidirectional fiber composites, J. Appl. Mech., 1980, 47(2): 329–334
  51. Shi, Y., Swait, T., Soutis, C., Modelling damage evolution in composite laminates subjected to low velocity impact, Compos. Struct., 2012, 94(9): 2902–2913
  52. Alshaikh, I.M.H., Nehdi, M.L., Abadel, A.A., Numerical investigations on progressive collapse of rubberized concrete frames strengthened by CFRP sheets, Structures, 2024, 60: 105918
DOI: https://doi.org/10.2478/msp-2024-0029 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 17 - 38
Submitted on: Aug 8, 2024
|
Accepted on: Sep 27, 2024
|
Published on: Nov 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Aref A. Abadel, Yousef R. Alharbi, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.