Have a personal or library account? Click to login
Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments Cover

Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments

Open Access
|Nov 2024

Figures & Tables

Figure 1

The fiber types: (a) PPF and (b) SF.
The fiber types: (a) PPF and (b) SF.

Figure 2

Methodology of experiments: casting, curing, heating, sandblasting, strengthening, and testing.
Methodology of experiments: casting, curing, heating, sandblasting, strengthening, and testing.

Figure 3

CFRP wrapping pattern.
CFRP wrapping pattern.

Figure 4

The heating and cooling curves used in this study.
The heating and cooling curves used in this study.

Figure 5

The failure patterns for strengthened and unstrengthened specimens.
The failure patterns for strengthened and unstrengthened specimens.

Figure 6

Effectiveness of CFRP jackets for all specimens at (a) 26°C and (b) 600°C.
Effectiveness of CFRP jackets for all specimens at (a) 26°C and (b) 600°C.

Figure 7

Stress–axial strain curves for all concrete cylinders at (a) 26°C and (b) 600°C.
Stress–axial strain curves for all concrete cylinders at (a) 26°C and (b) 600°C.

Figure 8

Effect of fiber types on compressive strength of concrete mixtures.
Effect of fiber types on compressive strength of concrete mixtures.

Figure 9

The concrete’s thermal properties at various temperatures: (a) expansion coefficient, (b) specific heat, and (c) thermal conductivity.
The concrete’s thermal properties at various temperatures: (a) expansion coefficient, (b) specific heat, and (c) thermal conductivity.

Figure 10

The concrete’s mechanical properties at various temperatures: (a) stress–strain curves for unconfined deep beam (C0-A) and (b) reduction coefficient for modulus of elasticity.
The concrete’s mechanical properties at various temperatures: (a) stress–strain curves for unconfined deep beam (C0-A) and (b) reduction coefficient for modulus of elasticity.

Figure 11

FE simulation steps: (a) element types, (b) load and support, and (c) meshing size.
FE simulation steps: (a) element types, (b) load and support, and (c) meshing size.

Figure 12

Failure mode of FE specimens.
Failure mode of FE specimens.

Test matrix used in the experimental program of this investigation_

Mixture IDSpecimen IDTemperature (°C)Fiber volumeStrengtheningNo. of specimens
SF (%)PPF (%)Total (%)
M-C0C0-A263
C0-T6003
C0-A-S26CFRP3
C0-T-S6003
M-PPFPPF-A260.20.23
PPF-T6003
PPF-A-S26CFRP3
PPF-T-S6003
M-SFSF-A260.60.63
SF-T6003
SF-A-S26CFRP3
SF-T-S6003
M-SF + PPFSF + PPF-A260.60.20.83
SF + PPF-T6003
SF + PPF-A-S26CFRP3
SF + PPF-T-S6003
Total no. of specimens48

Parameter values of concrete damaged plasticity model in this study_

ParametersDilation angle (°)Potential eccentricityBiaxial to uniaxial compressive strengthsCompressive meridianViscosity parameter
Unconfined concrete300.11.160.70
Confined concrete150.11.160.70

FE and experimental test results_

Specimens IDCompressive strength (MPa)Experimental/FE
ExperimentalFE
C0-A30.231.31.04
C0-T14.115.21.08
C0-A-S48.151.71.07
C0-T-S30.232.11.06
SF-A40.743.11.06
SF-T28.530.51.07
SF-A-S56.759.41.05
SF-T-S43.646.91.08
PPF-A32.934.71.05
PPF-T18.019.81.10
PPF-A-S50.754.31.07
PPF-T-S35.338.41.09
SF + PPF-A40.543.81.08
SF + PPF-T30.934.11.10
SF + PPF-A-S53.558.41.09
SF + PPF-T-S40.144.21.10

Fiber characteristics_

PropertiesFiber
PPFSF
ShapeCrimpedHooked ends
Section dimensions (mm)1.0 × 0.6 (rectangular cross section)0.75 (circular cross section)
Length (mm)5060
Tensile strength (MPa)5501225
Modulus of elasticity (Gpa)4.0200
Specific gravity0.907.85

Parameter values of CFRP material characteristics in this study_

ParametersValue
Elastic propertiesPoisson’s ratio N 0.3
Elastic modulus E 1 (MPa)220
E 2 (MPa)10
Modulus of rigidity G 12 = G 13 (MPa)5
CFRP strengthTensile strength f t1 (MPa)3,000
f t2 (MPa)12
Compressive strength f c1 = f c2 (MPa)12
Shear strength V f1 = V f2 (MPa)12
Damage evolutionTensile fracture energy G t1 (mJ/mm2)95
G t2 (mJ/mm2)1.2
Compressive fracture energy G c1 (mJ/mm2)95
G c2 (mJ/mm2)1.2

Epoxy adhesive and CFRP strip properties_

MaterialPropertyValueNotes
CFRP stripTensile Young’s modulus68.9 GPaExperimental values
Thickness1.0 mm
Tensile strength1122 MPa
Tensile strain1.7%
Epoxy adhesiveTensile strength71.5 MPaGiven by the manufacturer
Tensile Young’s modulus1.86 GPa
Tensile strain at break%5.25

Concrete mixture proportions (in kg/m3)_

MaterialWeight
Ordinary Portland cement378
Water190.5
Silica sand489
Crush sand294
Coarse aggregate d agg. = 20 mm675
d agg. = 10 mm320
Super-plasticizer1.0 L

Summary of experimental test results_

SpecimensCompressive strength (MPa) f cc/f c*Relative difference (%) **Initial stiffness (N/mm)Relative difference (%)*
C0-A30.220133.3
C0-T14.1−53.32169.2−89.2
C0-A-S48.11.59+59.134945.5+73.6
C0-T-S30.22.14+0.12419.3−88.0
SF-A40.726688.5
SF-T28.5−30.04560.0−82.9
SF-A-S56.71.39+39.332400.0+21.4
SF-T-S43.61.53+7.28729.1−67.3
PPF-A32.943866.7
PPF-T18.0−45.33600.0−85.0
PPF-A-S50.71.54+54.133800.0+41.3
PPF-T-S35.31.96+7.24029.4−83.2
SF + PPF-A40.527000.0
SF + PPF-T30.9−23.74414.3−83.7
SF + PPF-A-S53.51.32+32.135666.7+32.1
SF + PPF-T-S40.11.30−1.15342.0−80.2
DOI: https://doi.org/10.2478/msp-2024-0029 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 17 - 38
Submitted on: Aug 8, 2024
|
Accepted on: Sep 27, 2024
|
Published on: Nov 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Aref A. Abadel, Yousef R. Alharbi, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.