Have a personal or library account? Click to login
Ultrasonic treatment of aerosol jet printed traces Cover

Ultrasonic treatment of aerosol jet printed traces

Open Access
|Nov 2024

References

  1. [1] Wu, W., Inorganic nanomaterials for printed electronics: a review, Nanoscale, 2017, 9: 7342–7372, 10.1039/C7NR01604B
    Wu W. Inorganic nanomaterials for printed electronics: a review Nanoscale 2017 9 7342 7372 10.1039/C7NR01604B
  2. [2] Suganuma, K., Introduction to printed electronics, New York, NY: Springer; 2014, 10.1007/978-1-4614-9625-0
    Suganuma K. Introduction to printed electronics New York, NY Springer 2014 10.1007/978-1-4614-9625-0
  3. [3] Shaik, R.A., Rufus, E., Recent trends and role of large area flexible electronics in shape sensing application – a review, Ind. Robot. Int. J. Robot Res. Appl., 2021, 48: 745–762, 10.1108/IR-10-2020-0234
    Shaik R.A. Rufus E. Recent trends and role of large area flexible electronics in shape sensing application – a review Ind. Robot. Int. J. Robot Res. Appl. 2021 48 745 762 10.1108/IR-10-2020-0234
  4. [4] Choi, H.W., Zhou, T., Singh, M., Jabbour, G.E., Recent developments and directions in printed nanomaterials, Nanoscale, 2015, 7: 3338–3355, 10.1039/C4NR03915G
    Choi H.W. Zhou T. Singh M. Jabbour G.E. Recent developments and directions in printed nanomaterials Nanoscale 2015 7 3338 3355 10.1039/C4NR03915G
  5. [5] Mosa, MdA, Jo, J.Y., Kwon, K.-S., Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve, Addit. Manuf., 2023, 67: 103466, 10.1016/j.addma.2023.103466
    Mosa MdA Jo J.Y. Kwon K.-S. Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve Addit. Manuf. 2023 67 103466 10.1016/j.addma.2023.103466
  6. [6] Seiti, M., Degryse, O., Ferraris, E., Aerosol Jet® printing 3D capabilities for metal and polymeric inks, Mater. Today Proc., 2022, 70: 38–44, 10.1016/j.matpr.2022.08.488
    Seiti M. Degryse O. Ferraris E. Aerosol Jet® printing 3D capabilities for metal and polymeric inks Mater. Today Proc. 2022 70 38 44 10.1016/j.matpr.2022.08.488
  7. [7] Tursunniyaz, M., Meredith, A., Andrews, J., Aerosol jet printed resistive temperature sensors with high sensitivity, Sens. Actuators A Phys., 2023, 364: 114777, 10.1016/j.sna.2023.114777
    Tursunniyaz M. Meredith A. Andrews J. Aerosol jet printed resistive temperature sensors with high sensitivity Sens. Actuators A Phys. 2023 364 114777 10.1016/j.sna.2023.114777
  8. [8] Ramesh, S., Mahajan, C., Gerdes, S., Gaikwad, A., Rao, P., Cormier, D.R., et al., Numerical and experimental investigation of aerosol jet printing, Addit. Manuf., 2022, 59: 103090, 10.1016/j.addma.2022.103090
    Ramesh S. Mahajan C. Gerdes S. Gaikwad A. Rao P. Cormier D.R. Numerical and experimental investigation of aerosol jet printing Addit. Manuf. 2022 59 103090 10.1016/j.addma.2022.103090
  9. [9] Hines, D.R., Gu, Y., Martin, A.A., Li, P., Fleischer, J., Clough-Paez, A., et al., Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits, Addit. Manuf., 2021, 47: 102325, 10.1016/j.addma.2021.102325
    Hines D.R. Gu Y. Martin A.A. Li P. Fleischer J. Clough-Paez A. Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits Addit. Manuf. 2021 47 102325 10.1016/j.addma.2021.102325
  10. [10] Zhu, Y., Yu, L., Wu, D., Lv, W., Wang, L., A high-sensitivity graphene ammonia sensor via aerosol jet printing, Sens. Actuators A Phys., 2021, 318: 112434, 10.1016/j.sna.2020.112434
    Zhu Y. Yu L. Wu D. Lv W. Wang L. A high-sensitivity graphene ammonia sensor via aerosol jet printing Sens. Actuators A Phys. 2021 318 112434 10.1016/j.sna.2020.112434
  11. [11] Ako, H., O’Mahony, J., Hughes, H., McLoughlin, P., O’Reilly, N.J., A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing, Appl. Mater. Today, 2023, 35: 101958, 10.1016/j.apmt.2023.101958
    Ako H. O’Mahony J. Hughes H. McLoughlin P. O’Reilly N.J. A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing Appl. Mater. Today 2023 35 101958 10.1016/j.apmt.2023.101958
  12. [12] Gamba, L., Lajoie, J.A., Sippel, T.R., Secor, E.B., Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas, Adv. Funct. Mater., 33: 2304060, 10.1002/adfm.202304060
    Gamba L. Lajoie J.A. Sippel T.R. Secor E.B. Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas Adv. Funct. Mater. 33 2304060 10.1002/adfm.202304060
  13. [13] Fisher, C., Skolrood, L.N., Li, K., Joshi, P.C., Aytug, T., Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review, Adv. Mater. Technol., 2023, 8: 2300030, 10.1002/admt.202300030
    Fisher C. Skolrood L.N. Li K. Joshi P.C. Aytug T. Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review Adv. Mater. Technol. 2023 8 2300030 10.1002/admt.202300030
  14. [14] Degryse, O., Bloemen, V., Ferraris, E., Collagen composite inks for Aerosol Jet® printing in bone tissue engineering applications, Procedia CIRP, 2022, 110: 180–185, 10.1016/j.procir.2022.06.033
    Degryse O. Bloemen V. Ferraris E. Collagen composite inks for Aerosol Jet® printing in bone tissue engineering applications Procedia CIRP 2022 110 180 185 10.1016/j.procir.2022.06.033
  15. [15] Wilkinson, N.J., Smith, M.A.A., Kay, R.W., Harris, R.A., A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing, Int. J. Adv. Manuf. Technol., 2019, 105: 4599–4619, 10.1007/s00170-019-03438-2
    Wilkinson N.J. Smith M.A.A. Kay R.W. Harris R.A. A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing Int. J. Adv. Manuf. Technol. 2019 105 4599 4619 10.1007/s00170-019-03438-2
  16. [16] Skarżyński, K., Krzemiński, J., Jakubowska, M., Słoma, M., Highly conductive electronics circuits from aerosol jet printed silver inks, Sci. Rep., 2021, 11: 1–9, 10.1038/s41598-021-97312-5
    Skarżyński K. Krzemiński J. Jakubowska M. Słoma M. Highly conductive electronics circuits from aerosol jet printed silver inks Sci. Rep. 2021 11 1 9 10.1038/s41598-021-97312-5
  17. [17] Taccola, S., da Veiga, T., Chandler, J.H., Cespedes, O., Valdastri, P., Harris, R.A., Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns, Sci. Rep., 2022, 12: 17931, 10.1038/s41598-022-22312-y
    Taccola S. da Veiga T. Chandler J.H. Cespedes O. Valdastri P. Harris R.A. Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns Sci. Rep. 2022 12 17931 10.1038/s41598-022-22312-y
  18. [18] Safaee, S., Schock, M., Joyee, E.B., Pan, Y., Chen, R.K., Field-assisted additive manufacturing of polymeric composites, Addit. Manuf., 2022, 51: 102642, 10.1016/j.addma.2022.102642
    Safaee S. Schock M. Joyee E.B. Pan Y. Chen R.K. Field-assisted additive manufacturing of polymeric composites Addit. Manuf. 2022 51 102642 10.1016/j.addma.2022.102642
  19. [19] Moon, S.K., Ng, N.P.H., Chen, L., Ahn, D.-G., A novel quality inspection method for aerosol jet printed sensors through infrared imaging and machine learning, CIRP Ann., 2023, 72: 165–168, 10.1016/j.cirp.2023.03.029
    Moon S.K. Ng N.P.H. Chen L. Ahn D.-G. A novel quality inspection method for aerosol jet printed sensors through infrared imaging and machine learning CIRP Ann. 2023 72 165 168 10.1016/j.cirp.2023.03.029
  20. [20] Dunst, P., Hemsel, T., Bornmann, P., Littmann, W., Sextro, W., Optimization of ultrasonic acoustic standing wave systems, Actuators, 2020, 9: 9, 10.3390/act9010009
    Dunst P. Hemsel T. Bornmann P. Littmann W. Sextro W. Optimization of ultrasonic acoustic standing wave systems Actuators 2020 9 9 10.3390/act9010009
  21. [21] Ostasevicius, V., Jurenas, V., Golinka, I., Gaidys, R., Aleksa, A., Separation of microparticles from suspension utilizing ultrasonic standing waves in a piezoelectric cylinder actuator, Actuators, 2018, 7: 14, 10.3390/act7020014
    Ostasevicius V. Jurenas V. Golinka I. Gaidys R. Aleksa A. Separation of microparticles from suspension utilizing ultrasonic standing waves in a piezoelectric cylinder actuator Actuators 2018 7 14 10.3390/act7020014
  22. [22] Haake, A., Dual, J., Micro-manipulation of small particles by node position control of an ultrasonic standing wave, Ultrasonics, 2002, 40: 317–322, 10.1016/S0041-624X(02)00114-2
    Haake A. Dual J. Micro-manipulation of small particles by node position control of an ultrasonic standing wave Ultrasonics 2002 40 317 322 10.1016/S0041-624X(02)00114-2
  23. [23] Ikram, A., Mehmood, F., Sheridan, R.S., Awais, M., Walton, A., Eldosouky, A., et al., Particle size dependent sinterability and magnetic properties of recycled HDDR Nd–Fe–B powders consolidated with spark plasma sintering, J. Rare Earths, 2020, 38: 90–99, 10.1016/j.jre.2019.02.010
    Ikram A. Mehmood F. Sheridan R.S. Awais M. Walton A. Eldosouky A. Particle size dependent sinterability and magnetic properties of recycled HDDR Nd–Fe–B powders consolidated with spark plasma sintering J. Rare Earths 2020 38 90 99 10.1016/j.jre.2019.02.010
  24. [24] Cravotto, G., Gaudino, E.C., Cintas, P., On the mechanochemical activation by ultrasound, Chem. Soc. Rev., 2013, 42: 7521–7534, 10.1039/C2CS35456J
    Cravotto G. Gaudino E.C. Cintas P. On the mechanochemical activation by ultrasound Chem. Soc. Rev. 2013 42 7521 7534 10.1039/C2CS35456J
  25. [25] Harris, N.R., Hill, M., Particle manipulation using ultrasonic fields, In: Li, D., (Ed.). Encyclopedia of microfluidics and nanofluidics, US, Boston, MA: Springer; 2008, p. 1597–1602, 10.1007/978-0-387-48998-8_1186
    Harris N.R. Hill M. Particle manipulation using ultrasonic fields In: Li D. (Ed.). Encyclopedia of microfluidics and nanofluidics US, Boston, MA Springer 2008 p. 1597 1602 10.1007/978-0-387-48998-8_1186
  26. [26] Courtney, C.R.P., Ong, C.-K., Drinkwater, B.W., Bernassau, A.L., Wilcox, P.D., Cumming, D.R.S., Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves, Proc. R. Soc. A Math. Phys. Eng. Sci., 2011, 468: 337–360, 10.1098/rspa.2011.0269
    Courtney C.R.P. Ong C.-K. Drinkwater B.W. Bernassau A.L. Wilcox P.D. Cumming D.R.S. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves Proc. R. Soc. A Math. Phys. Eng. Sci. 2011 468 337 360 10.1098/rspa.2011.0269
  27. [27] Hill, M., Harris, N.R., Ultrasonic particle manipulation, In: Hardt S., Schönfeld F., (Eds.). Microfluidic technologies for miniaturized analysis systems, US, Boston, MA: Springer; 2007, p. 357–392, 10.1007/978-0-387-68424-6_9
    Hill M. Harris N.R. Ultrasonic particle manipulation In: Hardt S. Schönfeld F. (Eds.). Microfluidic technologies for miniaturized analysis systems US, Boston, MA Springer 2007 p. 357 392 10.1007/978-0-387-68424-6_9
  28. [28] Łapa, W., Winnicki, M., Orłowska, K., Investigation of aerosol droplets diameter generated in aerosol jet printing, Mater. Sci. Poland, 2022, 40: 78–90, 10.2478/msp-2022-0046
    Łapa W. Winnicki M. Orłowska K. Investigation of aerosol droplets diameter generated in aerosol jet printing Mater. Sci. Poland 2022 40 78 90 10.2478/msp-2022-0046
  29. [29] Sreenilayam, S.P., McCarthy, É, McKeon, L., Ronan, O., McCann, R., Fleischer, K., et al., Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing, Chem. Eng. J., 2022, 449: 137817, 10.1016/j.cej.2022.137817
    Sreenilayam S.P. McCarthy É McKeon L. Ronan O. McCann R. Fleischer K. Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing Chem. Eng. J. 2022 449 137817 10.1016/j.cej.2022.137817
  30. [30] Williams, B.A., Trejo, N.D., Wu, A., Holgate, C.S., Francis, L.F., Aydil, E.S., Copper–zinc–tin–sulfide thin films via annealing of ultrasonic spray deposited nanocrystal coatings, ACS Appl. Mater. Interfaces, 2017, 9: 18865–18871, 10.1021/acsami.7b04414
    Williams B.A. Trejo N.D. Wu A. Holgate C.S. Francis L.F. Aydil E.S. Copper–zinc–tin–sulfide thin films via annealing of ultrasonic spray deposited nanocrystal coatings ACS Appl. Mater. Interfaces 2017 9 18865 18871 10.1021/acsami.7b04414
  31. [31] Binder, S., Glatthaar, M., Rädlein, E., Analytical investigation of aerosol jet printing, Aerosol Sci. Technol., 2014, 48: 924–929, 10.1080/02786826.2014.940439
    Binder S. Glatthaar M. Rädlein E. Analytical investigation of aerosol jet printing Aerosol Sci. Technol. 2014 48 924 929 10.1080/02786826.2014.940439
  32. [32] Secor, E.B., Principles of aerosol jet printing, Flex. Print. Electron., 2018, 3, 035002, 10.1088/2058-8585/aace28
    Secor E.B. Principles of aerosol jet printing Flex. Print. Electron. 2018 3 035002 10.1088/2058-8585/aace28
  33. [33] Alhendi, M., Sivasubramony, R.S., Lombardi, J., Weerawarne, D.L., Borgesen, P., Poliks, M.D., et al., Laser sintering of aerosol jet printed conductive interconnects on paper substrate, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019, p. 1581–1587, 10.1109/ECTC.2019.00243
    Alhendi M. Sivasubramony R.S. Lombardi J. Weerawarne D.L. Borgesen P. Poliks M.D. Laser sintering of aerosol jet printed conductive interconnects on paper substrate 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) 2019 p. 1581 1587 10.1109/ECTC.2019.00243
  34. [34] Gramlich, G., Huber, R., Häslich, F., Bhutani, A., Lemmer, U., Zwick, T., Process considerations for Aerosol-Jet printing of ultra fine features, Flex. Print. Electron., 2023, 8, 035002, 10.1088/2058-8585/ace3d8
    Gramlich G. Huber R. Häslich F. Bhutani A. Lemmer U. Zwick T. Process considerations for Aerosol-Jet printing of ultra fine features Flex. Print. Electron. 2023 8 035002 10.1088/2058-8585/ace3d8
  35. [35] Sui, Y., Tsui, L., Thibodeaux, A.J., Lavin, J.M., An aerosol jet printed resistance temperature detector-micro hotplate with temperature coefficient of resistance stabilized by electrical sintering, Adv. Mater. Technol., 2023, 8, 2202053, 10.1002/admt.202202053
    Sui Y. Tsui L. Thibodeaux A.J. Lavin J.M. An aerosol jet printed resistance temperature detector-micro hotplate with temperature coefficient of resistance stabilized by electrical sintering Adv. Mater. Technol. 2023 8 2202053 10.1002/admt.202202053
  36. [36] Pandhi, T., Kreit, E., Aga, R., Fujimoto, K., Sharbati, M.T., Khademi, S., et al., Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects, Sci. Rep., 2018, 8, 10842, 10.1038/s41598-018-29195-y
    Pandhi T. Kreit E. Aga R. Fujimoto K. Sharbati M.T. Khademi S. Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects Sci. Rep. 2018 8 10842 10.1038/s41598-018-29195-y
  37. [37] Zhang, Y., Chen, X., Particle separation in microfluidics using different modal ultrasonic standing waves, Ultrason. Sonochem., 2021, 75, 105603, 10.1016/j.ultsonch.2021.105603
    Zhang Y. Chen X. Particle separation in microfluidics using different modal ultrasonic standing waves Ultrason. Sonochem. 2021 75 105603 10.1016/j.ultsonch.2021.105603
  38. [38] Silva, G.T., Lopes, J.H., Leão-Neto, J.P., Nichols, M.K., Drinkwater, B.W., Particle patterning by ultrasonic standing waves in a rectangular cavity, Phys. Rev. Appl., 2019, 11, 054044, 10.1103/PhysRevApplied.11.054044
    Silva G.T. Lopes J.H. Leão-Neto J.P. Nichols M.K. Drinkwater B.W. Particle patterning by ultrasonic standing waves in a rectangular cavity Phys. Rev. Appl. 2019 11 054044 10.1103/PhysRevApplied.11.054044
  39. [39] Winnicki, M., Łapa, W., Świadkowski, B., A novel approach to improve reliability of aerosol jet printing process, EiN – Maintenance and Reliability, 2024, 26(2), 10.17531/ein/180012
    Winnicki M. Łapa W. Świadkowski B. A novel approach to improve reliability of aerosol jet printing process EiN – Maintenance and Reliability 2024 26 2 10.17531/ein/180012
  40. Kinart, A.E., Moscicki, A.J., Nano-inks for printing electric circuits for microelectronics technology, 2014, https://science24.com/paper/31307#gsc.tab=0 (access 16 July 2024).
  41. [41] Gallego-Juárez, J.A., Graff, K.F., 1 - Introduction to power ultrasonics, In: Gallego-Juárez J. A., Graff K. F., (Eds.). Power ultrasonics, Oxford: Woodhead Publishing; 2015, p. 1–6, 10.1016/B978-1-78242-028-6.00001-6
    Gallego-Juárez J.A. Graff K.F. 1 - Introduction to power ultrasonics In: Gallego-Juárez J. A. Graff K. F. (Eds.). Power ultrasonics Oxford Woodhead Publishing 2015 p. 1 6 10.1016/B978-1-78242-028-6.00001-6
  42. [42] Seah, K.H.W., Wong, Y.S., Lee, L.C., Design of tool holders for ultrasonic machining using FEM, J. Mater. Process. Technol., 1993, 37, 801–816, 10.1016/0924-0136(93)90138-V
    Seah K.H.W. Wong Y.S. Lee L.C. Design of tool holders for ultrasonic machining using FEM J. Mater. Process. Technol. 1993 37 801 816 10.1016/0924-0136(93)90138-V
  43. Dipal, A., Analysis of different shaped sonotrodes used for plastic welding. Conference paper, Institute of Technology, Nirma University; 2011
  44. Yassin, M.M., Design of ultrasonic processing device for aluminum surfaces, Master thesis, Waterloo, Ontario, Canada: Univ. of Waterloo; 2018
  45. Nad, M., Ultrasonic horn design for ultrasonic machining technologies, Appl. Comput. Mech., 2010, 4, 79–88
  46. [46] Liesegang, M., Yu, Y., Beck, T., Balle, F., Sonotrodes for ultrasonic welding of titanium/CFRP-joints—materials selection and design, J. Manuf. Mater. Process., 2021, 5, 61, 10.3390/jmmp5020061
    Liesegang M. Yu Y. Beck T. Balle F. Sonotrodes for ultrasonic welding of titanium/CFRP-joints—materials selection and design J. Manuf. Mater. Process. 2021 5 61 10.3390/jmmp5020061
  47. Wang, Y., Chen, Z., Yu, Q., Cheng, F., Modeling of sonotrode system of ultrasonic consolidation with transfer matrix method, Front. Mater., 2021, 8, 642896, 10.3389/fmats.2021.642896 (accessed January 2, 2024)
  48. [48] Li, H., Cao, B., Liu, J., Yang, J., Modeling of high-power ultrasonic welding of Cu/Al joint, Int. J. Adv. Manuf. Technol., 2018, 97, 833–844, 10.1007/s00170-018-2002-1
    Li H. Cao B. Liu J. Yang J. Modeling of high-power ultrasonic welding of Cu/Al joint Int. J. Adv. Manuf. Technol. 2018 97 833 844 10.1007/s00170-018-2002-1
  49. [49] Li, H., Cao, B., Yang, J.W., Liu, J., Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint, J. Mater. Process. Technol., 2018, 256, 121–130, 10.1016/j.jmatprotec.2018.02.008
    Li H. Cao B. Yang J.W. Liu J. Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint J. Mater. Process. Technol. 2018 256 121 130 10.1016/j.jmatprotec.2018.02.008
  50. [50] Rurup, J.D., Secor, E.B., A real-time process diagnostic to support reliability, control, and fundamental understanding in aerosol jet printing, Adv. Eng. Mater., 26, 2301348, 10.1002/adem.202301348
    Rurup J.D. Secor E.B. A real-time process diagnostic to support reliability, control, and fundamental understanding in aerosol jet printing Adv. Eng. Mater. 26 2301348 10.1002/adem.202301348
  51. [51] Li, L., Zhang, K., Cheng, H., Ma, T., Niu, Y., Li, A., et al., Experimental and simulation investigations on the morphology of aerosol jet printed polymer traces under in-situ UV and thermal curing conditions, Addit. Manuf., 2023, 69, 103515, 10.1016/j.addma.2023.103515
    Li L. Zhang K. Cheng H. Ma T. Niu Y. Li A. Experimental and simulation investigations on the morphology of aerosol jet printed polymer traces under in-situ UV and thermal curing conditions Addit. Manuf. 2023 69 103515 10.1016/j.addma.2023.103515
  52. [52] Vaithilingam, J., Simonelli, M., Saleh, E., Senin, N., Wildman, R.D., Hague, R.J.M., et al., Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures, ACS Appl. Mater. Interfaces, 2017, 9, 6560–6570, 10.1021/acsami.6b14787
    Vaithilingam J. Simonelli M. Saleh E. Senin N. Wildman R.D. Hague R.J.M. Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures ACS Appl. Mater. Interfaces 2017 9 6560 6570 10.1021/acsami.6b14787
  53. [53] Abramov, V.O., Abramova, A.V., Bayazitov, V.M., Nikonov, R.V., Cravotto, G., Pores-free aluminium alloy by efficient degassing ultrasonic treatments, Appl. Acoust., 2021, 184, 108343, 10.1016/j.apacoust.2021.108343
    Abramov V.O. Abramova A.V. Bayazitov V.M. Nikonov R.V. Cravotto G. Pores-free aluminium alloy by efficient degassing ultrasonic treatments Appl. Acoust. 2021 184 108343 10.1016/j.apacoust.2021.108343
  54. [54] Białas, K., Buchacz, A., Active reduction of vibration of mechatronic systems, EiN, 2015, 17, 528–534, 10.17531/ein.2015.4.7
    Białas K. Buchacz A. Active reduction of vibration of mechatronic systems EiN 2015 17 528 534 10.17531/ein.2015.4.7
  55. [55] Wu, H., Zheng, H., Li, Y., Ohl, C.-D., Yu, H., Li, D., Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field, Ultrason. Sonochem., 2021, 78, 105735, 10.1016/j.ultsonch.2021.105735
    Wu H. Zheng H. Li Y. Ohl C.-D. Yu H. Li D. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field Ultrason. Sonochem. 2021 78 105735 10.1016/j.ultsonch.2021.105735
  56. [56] Sarasua, J.A., Rubio, L.R., Aranzabe, E., Vilela, J.L.V., Energetic study of ultrasonic wettability enhancement, Ultrason. Sonochem., 2021, 79, 105768, 10.1016/j.ultsonch.2021.105768
    Sarasua J.A. Rubio L.R. Aranzabe E. Vilela J.L.V. Energetic study of ultrasonic wettability enhancement Ultrason. Sonochem. 2021 79 105768 10.1016/j.ultsonch.2021.105768
DOI: https://doi.org/10.2478/msp-2024-0028 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 111 - 127
Submitted on: Jul 22, 2024
|
Accepted on: Sep 30, 2024
|
Published on: Nov 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Marcin Korzeniowski, Marcin Winnicki, Bartosz Swiadkowski, Wojciech Łapa, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.