References
-
[1]
Wu, W., Inorganic nanomaterials for printed electronics: a review, Nanoscale, 2017, 9: 7342–7372, 10.1039/C7NR01604B
Wu W. Inorganic nanomaterials for printed electronics: a review Nanoscale 2017 9 7342 7372 10.1039/C7NR01604B
-
[2]
Suganuma, K., Introduction to printed electronics, New York, NY: Springer; 2014, 10.1007/978-1-4614-9625-0
Suganuma K. Introduction to printed electronics New York, NY Springer 2014 10.1007/978-1-4614-9625-0
-
[3]
Shaik, R.A., Rufus, E., Recent trends and role of large area flexible electronics in shape sensing application – a review, Ind. Robot. Int. J. Robot Res. Appl., 2021, 48: 745–762, 10.1108/IR-10-2020-0234
Shaik R.A. Rufus E. Recent trends and role of large area flexible electronics in shape sensing application – a review Ind. Robot. Int. J. Robot Res. Appl. 2021 48 745 762 10.1108/IR-10-2020-0234
-
[4]
Choi, H.W., Zhou, T., Singh, M., Jabbour, G.E., Recent developments and directions in printed nanomaterials, Nanoscale, 2015, 7: 3338–3355, 10.1039/C4NR03915G
Choi H.W. Zhou T. Singh M. Jabbour G.E. Recent developments and directions in printed nanomaterials Nanoscale 2015 7 3338 3355 10.1039/C4NR03915G
-
[5]
Mosa, MdA, Jo, J.Y., Kwon, K.-S., Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve, Addit. Manuf., 2023, 67: 103466, 10.1016/j.addma.2023.103466
Mosa MdA Jo J.Y. Kwon K.-S. Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve Addit. Manuf. 2023 67 103466 10.1016/j.addma.2023.103466
-
[6]
Seiti, M., Degryse, O., Ferraris, E., Aerosol Jet® printing 3D capabilities for metal and polymeric inks, Mater. Today Proc., 2022, 70: 38–44, 10.1016/j.matpr.2022.08.488
Seiti M. Degryse O. Ferraris E. Aerosol Jet® printing 3D capabilities for metal and polymeric inks Mater. Today Proc. 2022 70 38 44 10.1016/j.matpr.2022.08.488
-
[7]
Tursunniyaz, M., Meredith, A., Andrews, J., Aerosol jet printed resistive temperature sensors with high sensitivity, Sens. Actuators A Phys., 2023, 364: 114777, 10.1016/j.sna.2023.114777
Tursunniyaz M. Meredith A. Andrews J. Aerosol jet printed resistive temperature sensors with high sensitivity Sens. Actuators A Phys. 2023 364 114777 10.1016/j.sna.2023.114777
-
[8]
Ramesh, S., Mahajan, C., Gerdes, S., Gaikwad, A., Rao, P., Cormier, D.R., et al., Numerical and experimental investigation of aerosol jet printing, Addit. Manuf., 2022, 59: 103090, 10.1016/j.addma.2022.103090
Ramesh S. Mahajan C. Gerdes S. Gaikwad A. Rao P. Cormier D.R. Numerical and experimental investigation of aerosol jet printing Addit. Manuf. 2022 59 103090 10.1016/j.addma.2022.103090
-
[9]
Hines, D.R., Gu, Y., Martin, A.A., Li, P., Fleischer, J., Clough-Paez, A., et al., Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits, Addit. Manuf., 2021, 47: 102325, 10.1016/j.addma.2021.102325
Hines D.R. Gu Y. Martin A.A. Li P. Fleischer J. Clough-Paez A. Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits Addit. Manuf. 2021 47 102325 10.1016/j.addma.2021.102325
-
[10]
Zhu, Y., Yu, L., Wu, D., Lv, W., Wang, L., A high-sensitivity graphene ammonia sensor via aerosol jet printing, Sens. Actuators A Phys., 2021, 318: 112434, 10.1016/j.sna.2020.112434
Zhu Y. Yu L. Wu D. Lv W. Wang L. A high-sensitivity graphene ammonia sensor via aerosol jet printing Sens. Actuators A Phys. 2021 318 112434 10.1016/j.sna.2020.112434
-
[11]
Ako, H., O’Mahony, J., Hughes, H., McLoughlin, P., O’Reilly, N.J., A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing, Appl. Mater. Today, 2023, 35: 101958, 10.1016/j.apmt.2023.101958
Ako H. O’Mahony J. Hughes H. McLoughlin P. O’Reilly N.J. A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing Appl. Mater. Today 2023 35 101958 10.1016/j.apmt.2023.101958
-
[12]
Gamba, L., Lajoie, J.A., Sippel, T.R., Secor, E.B., Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas, Adv. Funct. Mater., 33: 2304060, 10.1002/adfm.202304060
Gamba L. Lajoie J.A. Sippel T.R. Secor E.B. Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas Adv. Funct. Mater. 33 2304060 10.1002/adfm.202304060
-
[13]
Fisher, C., Skolrood, L.N., Li, K., Joshi, P.C., Aytug, T., Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review, Adv. Mater. Technol., 2023, 8: 2300030, 10.1002/admt.202300030
Fisher C. Skolrood L.N. Li K. Joshi P.C. Aytug T. Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review Adv. Mater. Technol. 2023 8 2300030 10.1002/admt.202300030
-
[14]
Degryse, O., Bloemen, V., Ferraris, E., Collagen composite inks for Aerosol Jet® printing in bone tissue engineering applications, Procedia CIRP, 2022, 110: 180–185, 10.1016/j.procir.2022.06.033
Degryse O. Bloemen V. Ferraris E. Collagen composite inks for Aerosol Jet® printing in bone tissue engineering applications Procedia CIRP 2022 110 180 185 10.1016/j.procir.2022.06.033
-
[15]
Wilkinson, N.J., Smith, M.A.A., Kay, R.W., Harris, R.A., A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing, Int. J. Adv. Manuf. Technol., 2019, 105: 4599–4619, 10.1007/s00170-019-03438-2
Wilkinson N.J. Smith M.A.A. Kay R.W. Harris R.A. A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing Int. J. Adv. Manuf. Technol. 2019 105 4599 4619 10.1007/s00170-019-03438-2
-
[16]
Skarżyński, K., Krzemiński, J., Jakubowska, M., Słoma, M., Highly conductive electronics circuits from aerosol jet printed silver inks, Sci. Rep., 2021, 11: 1–9, 10.1038/s41598-021-97312-5
Skarżyński K. Krzemiński J. Jakubowska M. Słoma M. Highly conductive electronics circuits from aerosol jet printed silver inks Sci. Rep. 2021 11 1 9 10.1038/s41598-021-97312-5
-
[17]
Taccola, S., da Veiga, T., Chandler, J.H., Cespedes, O., Valdastri, P., Harris, R.A., Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns, Sci. Rep., 2022, 12: 17931, 10.1038/s41598-022-22312-y
Taccola S. da Veiga T. Chandler J.H. Cespedes O. Valdastri P. Harris R.A. Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns Sci. Rep. 2022 12 17931 10.1038/s41598-022-22312-y
-
[18]
Safaee, S., Schock, M., Joyee, E.B., Pan, Y., Chen, R.K., Field-assisted additive manufacturing of polymeric composites, Addit. Manuf., 2022, 51: 102642, 10.1016/j.addma.2022.102642
Safaee S. Schock M. Joyee E.B. Pan Y. Chen R.K. Field-assisted additive manufacturing of polymeric composites Addit. Manuf. 2022 51 102642 10.1016/j.addma.2022.102642
-
[19]
Moon, S.K., Ng, N.P.H., Chen, L., Ahn, D.-G., A novel quality inspection method for aerosol jet printed sensors through infrared imaging and machine learning, CIRP Ann., 2023, 72: 165–168, 10.1016/j.cirp.2023.03.029
Moon S.K. Ng N.P.H. Chen L. Ahn D.-G. A novel quality inspection method for aerosol jet printed sensors through infrared imaging and machine learning CIRP Ann. 2023 72 165 168 10.1016/j.cirp.2023.03.029
-
[20]
Dunst, P., Hemsel, T., Bornmann, P., Littmann, W., Sextro, W., Optimization of ultrasonic acoustic standing wave systems, Actuators, 2020, 9: 9, 10.3390/act9010009
Dunst P. Hemsel T. Bornmann P. Littmann W. Sextro W. Optimization of ultrasonic acoustic standing wave systems Actuators 2020 9 9 10.3390/act9010009
-
[21]
Ostasevicius, V., Jurenas, V., Golinka, I., Gaidys, R., Aleksa, A., Separation of microparticles from suspension utilizing ultrasonic standing waves in a piezoelectric cylinder actuator, Actuators, 2018, 7: 14, 10.3390/act7020014
Ostasevicius V. Jurenas V. Golinka I. Gaidys R. Aleksa A. Separation of microparticles from suspension utilizing ultrasonic standing waves in a piezoelectric cylinder actuator Actuators 2018 7 14 10.3390/act7020014
-
[22]
Haake, A., Dual, J., Micro-manipulation of small particles by node position control of an ultrasonic standing wave, Ultrasonics, 2002, 40: 317–322, 10.1016/S0041-624X(02)00114-2
Haake A. Dual J. Micro-manipulation of small particles by node position control of an ultrasonic standing wave Ultrasonics 2002 40 317 322 10.1016/S0041-624X(02)00114-2
-
[23]
Ikram, A., Mehmood, F., Sheridan, R.S., Awais, M., Walton, A., Eldosouky, A., et al., Particle size dependent sinterability and magnetic properties of recycled HDDR Nd–Fe–B powders consolidated with spark plasma sintering, J. Rare Earths, 2020, 38: 90–99, 10.1016/j.jre.2019.02.010
Ikram A. Mehmood F. Sheridan R.S. Awais M. Walton A. Eldosouky A. Particle size dependent sinterability and magnetic properties of recycled HDDR Nd–Fe–B powders consolidated with spark plasma sintering J. Rare Earths 2020 38 90 99 10.1016/j.jre.2019.02.010
-
[24]
Cravotto, G., Gaudino, E.C., Cintas, P., On the mechanochemical activation by ultrasound, Chem. Soc. Rev., 2013, 42: 7521–7534, 10.1039/C2CS35456J
Cravotto G. Gaudino E.C. Cintas P. On the mechanochemical activation by ultrasound Chem. Soc. Rev. 2013 42 7521 7534 10.1039/C2CS35456J
-
[25]
Harris, N.R., Hill, M., Particle manipulation using ultrasonic fields, In: Li, D., (Ed.). Encyclopedia of microfluidics and nanofluidics, US, Boston, MA: Springer; 2008, p. 1597–1602, 10.1007/978-0-387-48998-8_1186
Harris N.R. Hill M. Particle manipulation using ultrasonic fields In: Li D. (Ed.). Encyclopedia of microfluidics and nanofluidics US, Boston, MA Springer 2008 p. 1597 1602 10.1007/978-0-387-48998-8_1186
-
[26]
Courtney, C.R.P., Ong, C.-K., Drinkwater, B.W., Bernassau, A.L., Wilcox, P.D., Cumming, D.R.S., Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves, Proc. R. Soc. A Math. Phys. Eng. Sci., 2011, 468: 337–360, 10.1098/rspa.2011.0269
Courtney C.R.P. Ong C.-K. Drinkwater B.W. Bernassau A.L. Wilcox P.D. Cumming D.R.S. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves Proc. R. Soc. A Math. Phys. Eng. Sci. 2011 468 337 360 10.1098/rspa.2011.0269
-
[27]
Hill, M., Harris, N.R., Ultrasonic particle manipulation, In: Hardt S., Schönfeld F., (Eds.). Microfluidic technologies for miniaturized analysis systems, US, Boston, MA: Springer; 2007, p. 357–392, 10.1007/978-0-387-68424-6_9
Hill M. Harris N.R. Ultrasonic particle manipulation In: Hardt S. Schönfeld F. (Eds.). Microfluidic technologies for miniaturized analysis systems US, Boston, MA Springer 2007 p. 357 392 10.1007/978-0-387-68424-6_9
-
[28]
Łapa, W., Winnicki, M., Orłowska, K., Investigation of aerosol droplets diameter generated in aerosol jet printing, Mater. Sci. Poland, 2022, 40: 78–90, 10.2478/msp-2022-0046
Łapa W. Winnicki M. Orłowska K. Investigation of aerosol droplets diameter generated in aerosol jet printing Mater. Sci. Poland 2022 40 78 90 10.2478/msp-2022-0046
-
[29]
Sreenilayam, S.P., McCarthy, É, McKeon, L., Ronan, O., McCann, R., Fleischer, K., et al., Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing, Chem. Eng. J., 2022, 449: 137817, 10.1016/j.cej.2022.137817
Sreenilayam S.P. McCarthy É McKeon L. Ronan O. McCann R. Fleischer K. Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing Chem. Eng. J. 2022 449 137817 10.1016/j.cej.2022.137817
-
[30]
Williams, B.A., Trejo, N.D., Wu, A., Holgate, C.S., Francis, L.F., Aydil, E.S., Copper–zinc–tin–sulfide thin films via annealing of ultrasonic spray deposited nanocrystal coatings, ACS Appl. Mater. Interfaces, 2017, 9: 18865–18871, 10.1021/acsami.7b04414
Williams B.A. Trejo N.D. Wu A. Holgate C.S. Francis L.F. Aydil E.S. Copper–zinc–tin–sulfide thin films via annealing of ultrasonic spray deposited nanocrystal coatings ACS Appl. Mater. Interfaces 2017 9 18865 18871 10.1021/acsami.7b04414
-
[31]
Binder, S., Glatthaar, M., Rädlein, E., Analytical investigation of aerosol jet printing, Aerosol Sci. Technol., 2014, 48: 924–929, 10.1080/02786826.2014.940439
Binder S. Glatthaar M. Rädlein E. Analytical investigation of aerosol jet printing Aerosol Sci. Technol. 2014 48 924 929 10.1080/02786826.2014.940439
-
[32]
Secor, E.B., Principles of aerosol jet printing, Flex. Print. Electron., 2018, 3, 035002, 10.1088/2058-8585/aace28
Secor E.B. Principles of aerosol jet printing Flex. Print. Electron. 2018 3 035002 10.1088/2058-8585/aace28
-
[33]
Alhendi, M., Sivasubramony, R.S., Lombardi, J., Weerawarne, D.L., Borgesen, P., Poliks, M.D., et al., Laser sintering of aerosol jet printed conductive interconnects on paper substrate, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019, p. 1581–1587, 10.1109/ECTC.2019.00243
Alhendi M. Sivasubramony R.S. Lombardi J. Weerawarne D.L. Borgesen P. Poliks M.D. Laser sintering of aerosol jet printed conductive interconnects on paper substrate 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) 2019 p. 1581 1587 10.1109/ECTC.2019.00243
-
[34]
Gramlich, G., Huber, R., Häslich, F., Bhutani, A., Lemmer, U., Zwick, T., Process considerations for Aerosol-Jet printing of ultra fine features, Flex. Print. Electron., 2023, 8, 035002, 10.1088/2058-8585/ace3d8
Gramlich G. Huber R. Häslich F. Bhutani A. Lemmer U. Zwick T. Process considerations for Aerosol-Jet printing of ultra fine features Flex. Print. Electron. 2023 8 035002 10.1088/2058-8585/ace3d8
-
[35]
Sui, Y., Tsui, L., Thibodeaux, A.J., Lavin, J.M., An aerosol jet printed resistance temperature detector-micro hotplate with temperature coefficient of resistance stabilized by electrical sintering, Adv. Mater. Technol., 2023, 8, 2202053, 10.1002/admt.202202053
Sui Y. Tsui L. Thibodeaux A.J. Lavin J.M. An aerosol jet printed resistance temperature detector-micro hotplate with temperature coefficient of resistance stabilized by electrical sintering Adv. Mater. Technol. 2023 8 2202053 10.1002/admt.202202053
-
[36]
Pandhi, T., Kreit, E., Aga, R., Fujimoto, K., Sharbati, M.T., Khademi, S., et al., Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects, Sci. Rep., 2018, 8, 10842, 10.1038/s41598-018-29195-y
Pandhi T. Kreit E. Aga R. Fujimoto K. Sharbati M.T. Khademi S. Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects Sci. Rep. 2018 8 10842 10.1038/s41598-018-29195-y
-
[37]
Zhang, Y., Chen, X., Particle separation in microfluidics using different modal ultrasonic standing waves, Ultrason. Sonochem., 2021, 75, 105603, 10.1016/j.ultsonch.2021.105603
Zhang Y. Chen X. Particle separation in microfluidics using different modal ultrasonic standing waves Ultrason. Sonochem. 2021 75 105603 10.1016/j.ultsonch.2021.105603
-
[38]
Silva, G.T., Lopes, J.H., Leão-Neto, J.P., Nichols, M.K., Drinkwater, B.W., Particle patterning by ultrasonic standing waves in a rectangular cavity, Phys. Rev. Appl., 2019, 11, 054044, 10.1103/PhysRevApplied.11.054044
Silva G.T. Lopes J.H. Leão-Neto J.P. Nichols M.K. Drinkwater B.W. Particle patterning by ultrasonic standing waves in a rectangular cavity Phys. Rev. Appl. 2019 11 054044 10.1103/PhysRevApplied.11.054044
-
[39]
Winnicki, M., Łapa, W., Świadkowski, B., A novel approach to improve reliability of aerosol jet printing process, EiN – Maintenance and Reliability, 2024, 26(2), 10.17531/ein/180012
Winnicki M. Łapa W. Świadkowski B. A novel approach to improve reliability of aerosol jet printing process EiN – Maintenance and Reliability 2024 26 2 10.17531/ein/180012
- Kinart, A.E., Moscicki, A.J., Nano-inks for printing electric circuits for microelectronics technology, 2014, https://science24.com/paper/31307#gsc.tab=0 (access 16 July 2024).
-
[41]
Gallego-Juárez, J.A., Graff, K.F., 1 - Introduction to power ultrasonics, In: Gallego-Juárez J. A., Graff K. F., (Eds.). Power ultrasonics, Oxford: Woodhead Publishing; 2015, p. 1–6, 10.1016/B978-1-78242-028-6.00001-6
Gallego-Juárez J.A. Graff K.F. 1 - Introduction to power ultrasonics In: Gallego-Juárez J. A. Graff K. F. (Eds.). Power ultrasonics Oxford Woodhead Publishing 2015 p. 1 6 10.1016/B978-1-78242-028-6.00001-6
-
[42]
Seah, K.H.W., Wong, Y.S., Lee, L.C., Design of tool holders for ultrasonic machining using FEM, J. Mater. Process. Technol., 1993, 37, 801–816, 10.1016/0924-0136(93)90138-V
Seah K.H.W. Wong Y.S. Lee L.C. Design of tool holders for ultrasonic machining using FEM J. Mater. Process. Technol. 1993 37 801 816 10.1016/0924-0136(93)90138-V
- Dipal, A., Analysis of different shaped sonotrodes used for plastic welding. Conference paper, Institute of Technology, Nirma University; 2011
- Yassin, M.M., Design of ultrasonic processing device for aluminum surfaces, Master thesis, Waterloo, Ontario, Canada: Univ. of Waterloo; 2018
- Nad, M., Ultrasonic horn design for ultrasonic machining technologies, Appl. Comput. Mech., 2010, 4, 79–88
-
[46]
Liesegang, M., Yu, Y., Beck, T., Balle, F., Sonotrodes for ultrasonic welding of titanium/CFRP-joints—materials selection and design, J. Manuf. Mater. Process., 2021, 5, 61, 10.3390/jmmp5020061
Liesegang M. Yu Y. Beck T. Balle F. Sonotrodes for ultrasonic welding of titanium/CFRP-joints—materials selection and design J. Manuf. Mater. Process. 2021 5 61 10.3390/jmmp5020061
- Wang, Y., Chen, Z., Yu, Q., Cheng, F., Modeling of sonotrode system of ultrasonic consolidation with transfer matrix method, Front. Mater., 2021, 8, 642896, 10.3389/fmats.2021.642896 (accessed January 2, 2024)
-
[48]
Li, H., Cao, B., Liu, J., Yang, J., Modeling of high-power ultrasonic welding of Cu/Al joint, Int. J. Adv. Manuf. Technol., 2018, 97, 833–844, 10.1007/s00170-018-2002-1
Li H. Cao B. Liu J. Yang J. Modeling of high-power ultrasonic welding of Cu/Al joint Int. J. Adv. Manuf. Technol. 2018 97 833 844 10.1007/s00170-018-2002-1
-
[49]
Li, H., Cao, B., Yang, J.W., Liu, J., Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint, J. Mater. Process. Technol., 2018, 256, 121–130, 10.1016/j.jmatprotec.2018.02.008
Li H. Cao B. Yang J.W. Liu J. Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint J. Mater. Process. Technol. 2018 256 121 130 10.1016/j.jmatprotec.2018.02.008
-
[50]
Rurup, J.D., Secor, E.B., A real-time process diagnostic to support reliability, control, and fundamental understanding in aerosol jet printing, Adv. Eng. Mater., 26, 2301348, 10.1002/adem.202301348
Rurup J.D. Secor E.B. A real-time process diagnostic to support reliability, control, and fundamental understanding in aerosol jet printing Adv. Eng. Mater. 26 2301348 10.1002/adem.202301348
-
[51]
Li, L., Zhang, K., Cheng, H., Ma, T., Niu, Y., Li, A., et al., Experimental and simulation investigations on the morphology of aerosol jet printed polymer traces under in-situ UV and thermal curing conditions, Addit. Manuf., 2023, 69, 103515, 10.1016/j.addma.2023.103515
Li L. Zhang K. Cheng H. Ma T. Niu Y. Li A. Experimental and simulation investigations on the morphology of aerosol jet printed polymer traces under in-situ UV and thermal curing conditions Addit. Manuf. 2023 69 103515 10.1016/j.addma.2023.103515
-
[52]
Vaithilingam, J., Simonelli, M., Saleh, E., Senin, N., Wildman, R.D., Hague, R.J.M., et al., Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures, ACS Appl. Mater. Interfaces, 2017, 9, 6560–6570, 10.1021/acsami.6b14787
Vaithilingam J. Simonelli M. Saleh E. Senin N. Wildman R.D. Hague R.J.M. Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures ACS Appl. Mater. Interfaces 2017 9 6560 6570 10.1021/acsami.6b14787
-
[53]
Abramov, V.O., Abramova, A.V., Bayazitov, V.M., Nikonov, R.V., Cravotto, G., Pores-free aluminium alloy by efficient degassing ultrasonic treatments, Appl. Acoust., 2021, 184, 108343, 10.1016/j.apacoust.2021.108343
Abramov V.O. Abramova A.V. Bayazitov V.M. Nikonov R.V. Cravotto G. Pores-free aluminium alloy by efficient degassing ultrasonic treatments Appl. Acoust. 2021 184 108343 10.1016/j.apacoust.2021.108343
-
[54]
Białas, K., Buchacz, A., Active reduction of vibration of mechatronic systems, EiN, 2015, 17, 528–534, 10.17531/ein.2015.4.7
Białas K. Buchacz A. Active reduction of vibration of mechatronic systems EiN 2015 17 528 534 10.17531/ein.2015.4.7
-
[55]
Wu, H., Zheng, H., Li, Y., Ohl, C.-D., Yu, H., Li, D., Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field, Ultrason. Sonochem., 2021, 78, 105735, 10.1016/j.ultsonch.2021.105735
Wu H. Zheng H. Li Y. Ohl C.-D. Yu H. Li D. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field Ultrason. Sonochem. 2021 78 105735 10.1016/j.ultsonch.2021.105735
-
[56]
Sarasua, J.A., Rubio, L.R., Aranzabe, E., Vilela, J.L.V., Energetic study of ultrasonic wettability enhancement, Ultrason. Sonochem., 2021, 79, 105768, 10.1016/j.ultsonch.2021.105768
Sarasua J.A. Rubio L.R. Aranzabe E. Vilela J.L.V. Energetic study of ultrasonic wettability enhancement Ultrason. Sonochem. 2021 79 105768 10.1016/j.ultsonch.2021.105768