References
- van den Bosch MH. Osteoarthritis year in review 2020: biology. Osteoarthr Cartil. 2021;29(2): 143–50. doi: 10.1016/j.joca.2020.10.006
- Cai X, Yuan S, Zeng Y, Wang C, Yu N, Ding C. New trends in pharmacological treatments for osteoarthritis. Front Pharmacol. 2021;12: 645842. doi: 10.3389/fphar.2021.645842
- Li X-Z, Zhang SN. Recent advance in treatment of osteoarthritis by bioactive components from herbal medicine. Chin Med. 2020;15(1): 80. doi: 10.1186/s13020-020-00363-5
- Arias C, Vásquez B, Salazar LA. Propolis as a potential therapeutic agent to counteract age-related changes in cartilage: an in vivo study. Int J Mol Sci. 2023;24(18): 14272. doi: 10.3390/ijms241814272
- Boneva B, Marchev A, Amirova K, Ganova P, Georgiev M, Tchorbanov A, Mihaylova N. Crocus sativus extract as a biological agent for disease-modifying gherapy of collagenase-induced mouse model of osteoarthritis. Life (Basel). 2023;13(4): 894. doi: 10.3390/life13040894
- Zeng L, Yu G, Hao W, Yang K, Chen H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep. 2021;41(6): BSR20210817. doi: 10.1042/BSR20210817
- Almuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci. 2020;27(11): 3079–3086. doi: 10.1016/j.sjbs.2020.09.016
- Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The cardiovascular therapeutic potential of propolis—a comprehensive review. Biology (Basel). 2021;10(1): 27. doi: 10.3390/biology10010027
- Xing B, Li S, Yang J, Lin D, Feng Y, Lu J, Shao Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: a review. J Ethnopharmacol. 2021;281: 114555. doi: 10.1016/j.jep.2021.114555
- Vafaei S, Wu X, Tu J, Nematollahi-Mahani SN. The effects of crocin on bone and cartilage diseases. Front Pharmacol. 2022;12: 830331. doi: 10.3389/fphar.2021.830331
- Beevers CS, Huang S. Pharmacological and clinical properties of curcumin. Botanics: Targets Therapy. 2011(1): 5–18.
- Henrotin Y, Priem F, Mobasheri A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus. 2013;2: 1–9. doi: 10.1186/2193-1801-2-56
- Bonifacio BV, da Silva PB, Dos Santos Ramos MA, Silveira Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9: 1–15.
- Wang Q, Sun Y, Li S, Zhang P, Yao Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Advances. 2020;10(62): 37600–37620. DOI: 10.1039/D0RA07950B
- Cai W, Zhang W, Chen Z. Magnetic Fe3O4@ ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf B. 2023;223: 113170. doi: 10.1016/j.colsurfb.2023.113170
- Zhang H, Zhao M, Lin Y. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019;279: 201–210. doi: 10.1016/j.micromeso.2018.12.035
- Xie H, Liu X, Huang Z, Xu L, Bai R, He F, et al. Nanoscale zeolitic imidazolate framework (ZIF)–8 in cancer theranostics: current challenges and prospects. Cancers (Basel). 2022;14(16): 3935. doi: 10.3390/cancers14163935’
- Jin L, Wang S, Chen C, Qiu X, Wang C-C. ZIF-8 nanoparticles induce behavior abnormality and brain oxidative stress in adult zebrafish (Danio rerio). Antioxidants (Basel). 2023;12(7): 1345. doi: 10.3390/antiox12071345
- Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol. 2024;12: 1386534. doi: 10.3389/fbioe.2024.1386534
- Shi L, Wu J, Qiao X, Ha Y, Peng C, Wu R. In situ biomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater Sci Eng. 2020;6(8): 4595–4603. doi: 10.1021/acsbiomaterials.0c00935
- Chen P, He M, Chen B. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicol Environ Saf. 2020;205: 111110. doi: 10.1016/j.ecoenv.2020.111110
- Yang C, Wen J, Xue Z, Yin X, Li Y, Yuan L. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. J Environ Sci (China). 2023;127: 91–101. doi: 10.1016/j.jes.2022.03.020
- Ramos A, Miranda JD. Propolis: a review of its antiinflammatory and healing actions. J VA TiTD. 2007;13: 697–710. doi: 10.1590/S1678-91992007000400002
- Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, et al. Recent update on the anti-inflammatory activities of propolis. Molecules. 2022;27(23): 8473. doi: 10.3390/molecules27238473
- Borrelli F, Maffia P, Pinto L, Ianaro A, Russo A, Capasso F, Ialenti A. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia. 2002;73: S53–S63. doi: 10.1016/S0367-326X(02)00191-0
- Valenzuela-Barra G, Castro C, Figueroa C, Barriga A, Silva X, Las Heras B, et al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile. J Ethnopharmacol. 2015;168: 37–44. doi: 10.1016/j.jep.2015.03.050
- Hsieh CY, Li LH, Rao YK, Ju TC, Nai YS, Chen YW, Hua KF. Mechanistic insight into the attenuation of gouty inflammation by Taiwanese green propolis via inhibition of the NLRP3 inflammasome. J Cell Physiol. 2019;234(4): 4081–4094. doi: 10.1002/jcp.27204
- Puspasari A, Harijanti K, Soebadi B, Hendarti HT, Radithia D, Ernawati DS. Effects of topical application of propolis extract on fibroblast growth factor-2 and fibroblast expression in the traumatic ulcers of diabetic Rattus norvegicus. J Oral Maxillofac Pathol. 2018;22(1): 54–58. DOI: 10.4103/jomfp.JOMFP_82_17