Have a personal or library account? Click to login
Shear strengthening of deficient RC deep beams using NSM FRP system: Experimental and numerical investigation Cover

Shear strengthening of deficient RC deep beams using NSM FRP system: Experimental and numerical investigation

By: Aref Abadel  
Open Access
|May 2024

Figures & Tables

Fig. 1.

Test specimens: (a) DB-S-F; (b) DB-NS0; and (c) DB-FRP. (All dimensions are in mm)
Test specimens: (a) DB-S-F; (b) DB-NS0; and (c) DB-FRP. (All dimensions are in mm)

Fig. 2.

Strain gauge locations
Strain gauge locations

Fig. 3.

Failure pattern of specimen DB-S-F
Failure pattern of specimen DB-S-F

Fig. 4.

Failure pattern of specimen DB-NS0
Failure pattern of specimen DB-NS0

Fig. 5.

Failure pattern of specimen DB-FRP
Failure pattern of specimen DB-FRP

Fig. 7.

Load displacement of specimen DB-NS0
Load displacement of specimen DB-NS0

Fig. 9.

The idealized stress-strain curve for steel reinforcement
The idealized stress-strain curve for steel reinforcement

Fig. 6.

Load displacement of specimen DB-S-F
Load displacement of specimen DB-S-F

Fig. 8.

Load displacement of specimen DB-S
Load displacement of specimen DB-S

Fig. 10.

FE model set-up: (a) Finite elements types; (b) Loading and boundary conditions; (c) Meshing size.
FE model set-up: (a) Finite elements types; (b) Loading and boundary conditions; (c) Meshing size.

Fig. 11.

Failure modes for FE and experimental deep beams: (a) DB-S-F; (b) DB-NS0; (c) DB-FRP
Failure modes for FE and experimental deep beams: (a) DB-S-F; (b) DB-NS0; (c) DB-FRP

Fig. 12.

FE and experimental load versus mid-span deflection curves for deep beams
FE and experimental load versus mid-span deflection curves for deep beams

Test results of all tested specimens

Beam description of half span partShear strength (kN)Note
Beam part with no stirrups67.1 (DB-NS0)
Beam part having stirrups in all span82.5 (DB-S-F)23% improvement as compared to DB-NS0
RC beam part with no stirrups but strengthened using NSM U-wrap CFRP strips112 (DB-FRP)82% improvement as compared to DB-NS0

Constitutive material models parameters of concrete, Sikadur resin, and CFRP

MaterialParametersValuesDenotation
ConcreteDilation angle (ψ)32°Calibrated value
Eccentricity (ε)0.1ABAQUS (default value)
Stress ratio (σb0/σc0)1.16ABAQUS (default value)
Shape factor (Kc)0.667ABAQUS (default value)
Sikadur mortarDilation angle (ψ)40°Calibrated value
Eccentricity (ε)0.1ABAQUS (default value)
Stress ratio (σb0/σc0)1.16ABAQUS (default value)
Shape factor (Kc)0.667ABAQUS (default value)
CFRP sheetPoisson’s ratio (ν)0.3Widely used in FE modeling
Modulus of Elasticity (E)230000 MPaGiven by the manufacturer
Tensile strength (longitudinal: σt1)1122 MPaExperimental Value
Compressive strength (longitudinal: σc1)10 MPaAl-Mekhlafi, et al. [11]
Shear strength (longitudinal: τf1)10 MPa
Transversal tensile strength (σt2)10 MPa
Compressive strength (transversal: σc2)10 MPa
Shear strength (transversal: τf2)10 MPa

Mixture composition of concrete mixture

MaterialWeight (kg/m3)
Cement650
Silica sand528
Coarse aggregate (Nominal size = 10 mm)770
Crush sand264
Water (w/c = 0.25)162.5
Super-plasticizer(Gli-110)3 Liters

Overview of test samples

SpecimenLeft half spanRight half span
Shear stirrupsShear strengtheningShear stirrupsShear strengthening
DB-S-F2L-f6@100None2L-f6@100None
DB-NS02L-f6@100NoneNoneNone
DB-FRP2L-f6@100YesNoneThe specimen has two layers of U-wraps of FRP (25 mm wide) spaced at 100 mm intervals, along with a single layer of horizontally bonded FRP strips (50 mm wide) placed at the mid-depth on each face.

Comparison of experimental and FE results

Specimen IDExp. flexural strength (kN)FE flexural strength (kN)Error %
DB-S-F1651724.07%
DB-NS01341372.19%
DB-FRP2122182.75%

Mechanical characterization of steel reinforcement

Mechanical PropertyBar diameterTest Standard
10 mm6 mm
Yield strength, (MPa)525280ASTM A370 (2017)
Ultimate strength, (MPa)578380
Modulus of elasticity, (GPa)200200

Characteristics of the strengthening materials

ItemValue
CFRP composite
Type of FRPUnidirectional CFRP sheet
Longitudinal elastic modulus of the primary fibers. (GPa)77.3
Transverse elastic modulus relative to the primary fiber direction. (MPa)40.6
Strain at fracture along the primary fiber direction (%)1.1
Maximum tensile strength along the primary fiber direction (MPa)846
Thickness of each individual layer, tf (mm)1.0
Epoxy
Density (kg /l)1.16
Tensile strength of the adhesive (MPa)> 4.0 (7 days)
Tensile modulus of elasticity (GPa)3.5 (7 days)
Sikadur_31 Thixotropic epoxy_resin mortar
Tensile strength of the adhesive (MPa)15
Density (kg /l)1.65
Modulus of Elasticity (GPa)4.3

Mesh convergence analysis results

Mesh typesBeam elements sizeExperimental flexural strength (kN)FE flexural strength (kN)Experimental/FE
Type 12516518589.2%
Type 215 17892.7%
Type 37 17295.6%
DOI: https://doi.org/10.2478/msp-2024-0012 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 140 - 157
Submitted on: Apr 1, 2024
Accepted on: May 3, 2024
Published on: May 27, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Aref Abadel, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.