Have a personal or library account? Click to login
Enhanced catalytic activity of zeolitic imidazolate frameworks (ZIF-8) polyelectrolyte complex composites membranes by laser etching Cover

Enhanced catalytic activity of zeolitic imidazolate frameworks (ZIF-8) polyelectrolyte complex composites membranes by laser etching

Open Access
|May 2024

References

  1. Li L, Srivastava S, Meng S, Ting JM, Tirrell MV. Effects of non-electrostatic intermolecular interactions on the phase behavior of pH-sensitive polyelectrolyte complexes. Macromolecules. 2020; 53(18): 7835–7844.
  2. Adhikari S, Leaf MA, Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J Chem Phys. 2018; 149(16): 163308.
  3. Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E. Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polym Int. 2022; 71(6): 668–678.
  4. Ivanov A, Davletshina R, Sharafieva I, Evtugyn G. Electrochemical biosensor based on polyelectrolyte complexes for the determination of reversible inhibitors of acetylcholinesterase. Talanta. 2019; 194: 723–730.
  5. Debbarma L, Panwar V, Khanduri P, Panwar LS. Development of flexible PVDF/PAMPS polyelectrolyte proton conductive membrane. Mater Today: Proc. 2020; 26: 1776–1779.
  6. Zhao Q, An QF, Ji Y, Qian J, Gao C. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci. 2011; 379(1-2): 19–45.
  7. Luo J, Shi C, Qian X, Zhou K. Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin. Mater Chem Phys. 2022; 291: 126674.
  8. Dubas ST, Schlenoff JB. Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir. 2001; 17(25): 7725–7727.
  9. Dautzenberg H, Kriz J. Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir. 2003; 19(13): 5204–5211.
  10. Zelner M, Jahn P, Ulbricht M, Freger V. A mixed-charge polyelectrolyte complex nanofiltration membrane: Preparation, performance and stability. J Membr Sci. 2021; 636: 119579.
  11. Li Z, Wang J, Liu X, Liu S, Ou J, Yang S. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem. 2011; 21(10): 3397–3403.
  12. Teng X, Yu C, Wu X, Dong Y, Gao P, Hu H, et al. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J Mater Sci. 2018; 53: 5204–5215.
  13. Shutava T, Jansen C, Livanovich K, Pankov V, Janiak C. Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Trans. 2022; 51(18): 7053–7067.
  14. Houle FA. Basic mechanisms in laser etching and deposition. Appl Phys A. 1986; 41: 315–330.
  15. Dalaq AS, Barthelat F. Three-Dimensional Laser Engraving for Fabrication of Tough Glass-Based Bioinspired Materials. JOM. 2020; 72(4): 1487–1497. doi: 10.1007/s11837-019-04001-w
  16. Gabriel EFM, Coltro WKT, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis. 2014; 35(16): 2325–2332. doi: 10.1002/elps.201300511
  17. Pavithra B, Prabhu SG, Nayak MM. Design, development, fabrication, and testing of low-cost, laser-engraved, embedded, nano-composite-based pressure sensor. ISSS J Micro Smart Syst. 2022; 11(2): 349–353. doi: 10.1007/s41683-021-00076-3
  18. Yang Z, Li W, Liu S, Gao Q. Study on overlap rate and machinability of selected laser melting of maraging steel. Mater Sci-Pol. 2023; 41(2): 368–382.
  19. Li Y, Fischer R, Zboray R, Boillat P, Camenzind M, Toncelli C, et al. Laser-engraved textiles for engineering capillary flow and application in microfluidics. ACS Appl Mater Interfaces. 2020; 12(26): 29908–29916.
  20. Konstantinou G, Chil R, Desco M, Vaquero JJ. Subsurface laser engraving techniques for scintillator crystals: methods, applications, and advantages. IEEE Trans Radiat Plasma Med Sci. 2017; 1(5): 377–384. doi: 10.1109/TRPMS.2017.2714265.
  21. Wang M, Yang Y, Gao W. Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 2021; 3(11): 969–981. doi: 10.1016/j.trechm.2021.09.001
  22. Pungjunun K, Yakoh A, Chaiyo S, Praphairaksit N, Siangproh W, Kalcher K, et al. Laser engraved microapillary pump paper-based microfluidic device for colorimetric and electrochemical detection of salivary thiocyanate. Microchem Acta. 2021; 188(4): 140. doi: 10.1007/s00604-021-04793-2.
  23. Vivaldi FM, Dallinger A, Bonini A, Poma N, Sembranti L, Biagini D, et al. Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing. ACS Appl Mater Interfaces. 2021; 13(26): 30245–30260.
  24. Ravi-Kumar S, Lies B, Zhang X, Lyu H, Qin H. Laser ablation of polymers: A review. Polym Int. 2019; 68(8): 1391–1401.
  25. Wang T, Wang Y, Sun M, Hanif A, Wu H, Gu Q, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem Sci. 2020; 11(26): 6670–6681. doi: 10.1039/D0SC01397H
  26. Canilho N, Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, et al. Isocyanate-mediated covalent immobilization of Mucor miehei lipase onto SBA-15 for transesterification reaction. Colloids Surf, B. 2013; 112: 139–145. doi: 10.1016/j.colsurfb.2013.07.024
  27. Cravillon J, Schröder CA, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm. 2012; 14(2): 492–498. doi: 10.1039/C1CE06002C.
  28. Kaur H, Mohanta GC, Gupta V, Kukkar D, Tyagi S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Delivery Sci Technol. 2017; 41: 106–112. doi: 10.1016/j.jddst.2017.07.004
  29. Beh JJ, Lim JK, Ng EP, Ooi BS. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Mater Chem Phys. 2018; 216: 393–401. doi: 10.1016/j.matchemphys.2018.06.022
  30. Ta DN, Nguyen HKD, Trinh BX, Le QTN, Ta HN, Nguyen HT. Preparation of nano-ZIF-8 in methanol with high yield. Can J Chem Eng. 2018; 96(7): 1518–1531. doi: 10.1002/cjce.23155
  31. De Geest BG, Jonas AM, Demeester J, De Smedt SC. Glucose-responsive polyelectrolyte capsules. Langmuir. 2006; 22(11): 5070–5074.
  32. Zhang W, Wu L, Du L, Yue L, Guan R, Zhang Q, et al. Layer-by-layer assembly modification to prepare firmly bonded Si–graphene composites for high-performance anodes. RSC Adv. 2016; 6(6): 4835–4842.
  33. Gui Z, Du B, Qian J, An Q, Zhao Q. Construction and deconstruction of multilayer films containing polycarboxybetaine: Effect of pH and ionic strength. J Colloid Interface Sci. 2011; 353(1): 98–106.
  34. Zhang H, Zhao M, Yang Y, Lin YS. Hydrolysis and condensation of ZIF-8 in water. Microporous and Mesoporous Materials. 2019; 288: 109568.
  35. Jing H-P, Wang C-C, Zhang Y-W, Wang P, Li R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014; 4(97): 54454–54462.
DOI: https://doi.org/10.2478/msp-2024-0004 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 52 - 61
Submitted on: Jan 5, 2024
|
Accepted on: Mar 28, 2024
|
Published on: May 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Keywords:

© 2024 Ting Yu, Boonyarach Kitiyanan, Stephan Thierry Dubas, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.