Have a personal or library account? Click to login
Residual fly ash from pyrometallurgical processes as a partial replacement for Portland cement in mortars: a study of structural evolution and determination of compressive strength Cover

Residual fly ash from pyrometallurgical processes as a partial replacement for Portland cement in mortars: a study of structural evolution and determination of compressive strength

Open Access
|Apr 2024

References

  1. Imbabi M, Carrigan C, McKenna S. Trends and developments in green cement and concrete technology. Int J Sustain Built Environ. 2012;1(2):94–216. doi:10.1016/j.ijsbe.2013.05.001
  2. Albitar M, Ali MM, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater. 2015;83:128–35. doi:10.1016/j.conbuildmat.2015.03.009
  3. Rahman MA, Sarker PK, Shaikh FUA, Saha AK. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag, Constr Build Mater. 2017;140:194–202. doi:10.1016/j.conbuildmat.2017.02.023
  4. ASTM C618 – 03, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (2003). https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20C618&item_s_key=00014875
  5. Bendapudi SCK. Contribution of fly ash to the properties of mortar and concrete. Int J Earth Sci Eng. 2011;04(06 SPL):1017–23. https://www.researchgate.net/publication/255963880_Contribution_of_Fly_ash_to_the_properties_of_Mortar_and_Concrete
  6. Malvar LJ, Lenke LR. Efficiency of fly ash in mitigating alkali silica reaction based on chemical composition. ACI Mater J. 2006;103(5):319–26. http://worldcat.org/oclc/13846872
  7. Yang J, Zeng L, He, Su Y, Li Y, Tan H, et al. Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Constr Build Mater. 2021;289:123157. doi:10.1016/j.conbuildmat.2021.123157
  8. Neville AM. 1995. Properties of concrete. Harlow, Essex: Addison Wesley Longman Limited. http://worldcat.org/isbn/0582230705
  9. Chindaprasirt P, Rukzon S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater. 2008;22(8):1601–6. doi:10.1016/j.conbuildmat.2007.06.010
  10. Supit SW, Shaikh FU, Sarker PK. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Constr Build Mater. 2014;51:278–86. doi: 10.1016/j.conbuildmat.2013.11.002
  11. Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem Concr Res. 2004;34(7):1087–92. doi:10.1016/j.cemconres.2003.11.021
  12. Cheerarot R, Jaturapitakkul C. A study of disposed fly ash from landfill to replace Portland cement. Waste Manag. 2004;24(7):701–9. doi:10.1016/j.wasman.2004.02.003
  13. Rukzon S, Chindaprasirt P. Strength and chloride resistance of blended Portland cement mortar containing palm oil fuel ash and fly ash. Int J Min Met Mater. 2009;16(4):475–81. doi: 10.1016/S1674-4799(09)60083-2
  14. Fu X, Wang Z, Tao W, Yang C, Hou W, Dong Y, Wu X. Studies on blended cement with a large amount of fly ash. Cem Concr Res. 2002;32(7):1153–9. doi:10.1016/S0008-8846(02)00757-3
  15. Elahi A. Properties of high performance concrete with supplementary cementitious materials. Doctoral dissertation. Taxila. Department of Civil Engineering, University of Engineering and Technology, Pakistan; 2009. http://prr.hec.gov.pk/jspui/bitstream/123456789/1054/1/713S.pdf
  16. Oner A, Akyuz S, Yildiz R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res. 2005;35(6):1165–71. doi:10.1016/j.cemconres.2004.09.031
  17. Mexican Standard. NMX-C-152-ONNCCE-2015 Industria de la Construcción-Cementantes hidráulicos a determinación de la densidad.
  18. Mexican Standard. NMX-C-049-ONNCCE-2015 Industria de la Construcción – Cementantes Hidráulicos – Método de Ensayo para la Determinación de la Finura de Cementantes Hidráulicos Mediante la Malla 0,045 Mm (No. 325).
  19. Mexican Standard. NMX-C-061-ONNCCE-2015 Industria de la Construcción – Cementos Hidráulicos – Determinación de la Resistencia a la Compresión de Cementantes Hidráulicos.
  20. Mexican Standard. NMX-C-056-ONNCCE-2019 Industria de la Construcción – Cementantes Hidráulicos – Determinación de la Finura de los Cementantes Hidráulicos
  21. Moghaddam F, Sirivivatnanon V, Vessalas K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud Constr Mater. 2019;10:e00218. doi:10.1016/j.cscm.2019.e0021
  22. Mexican Standard. (2017). NMX-C-414-ONNCCE-2017. Industria de la Construcción-Cementantes Hidráulicos-Especificaciones y Métodos de Ensayo. https://dof.gob.mx/nota_detalle.php?codigo=5510053&fecha=04/01/2018#gsc.tab=0
  23. Mexican Standard. (2014). NMX-C-486-ONNCCE-2014, Industria de la construcción – Mampostería – Mortero para uso estructural – Especificaciones y métodos de ensayo. https://www.dof.gob.mx/nota_detalle.php?codigo=5367564&fecha=07/11/2014#gsc.tab=0
  24. Echlin P. Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Secaucus, New Jersey; Springer Science & Business Media; 2011. https://link.springer.com/book/10.1007/978-0-387-85731-2
  25. Miguel PC, Jiménez JG, Giménez LE. Hormigón autocompactante expansivo. Diseño y eficacia en sistemas de refuerzo por confinamiento de pilares cilíndricos, (2012). https://dialnet.unirioja.es/servlet/tesis?codigo=52893
  26. Gomes S, François M. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem Concr Res. 2000;30(2):175–81. doi:10.1016/S0008-8846(99)00226-4
  27. Kutchko BG, Kim AG. Fly ash characterization by SEM–EDS. Fuel. 2006;85(17–18):2537–44. doi:10.1016/j.fuel.2006.05.016
  28. Cui Y, Wang L, Liu J, Liu R, Pang B. Impact of particle size of fly ash on the early compressive strength of concrete: experimental investigation and modelling. Constr Build Mater. 2022;323:126444. doi:10.1016/j.conbuildmat.2022.126444
  29. Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Chutubtim S. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cem Concr Compos. 2001;23(4–5):335–43. doi:10.1016/S0958-9465(01)00016-6
  30. Young G, Yang M. Preparation and characterization of Portland cement clinker from iron ore tailings. Constr Build Mater. 2019;197:152–6. doi:10.1016/j.conbuildmat.2018.11.236
  31. Giraldo MA, Tobón JI. Evolución mineralógica del cemento portland durante el proceso de hidratación. Dyna. 2006;73(148):69–81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532006000100007
  32. Carrete JC. La “portlandita”-hidróxido de calcio-y la “tobermorita”-silicatos de calcio hidratados-de la pasta de cemento: tratamiento estequiométrico de sus compartimentos. Cemento Hormigón. 2001;824:526–42. https://dialnet.unirioja.es/servlet/articulo?codigo=5528283
  33. Abo-El-Eein SA, Salem T, Hekal EE. Thermal and physicochemical studies on ettringite. il Cemento—Roma. 1988;85(1):47–85. https://scholar.google.com/citations?user=HEaSrGkAAAAJ&hl=th
  34. Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructure of blended cement paste. Constr Build Mater. 2007;21(7):1534–41. doi:10.1016/j.conbuildmat.2005.12.024
  35. Bijen J, Selst I. CUR Report 144. Fly ash as addition to concrete. Research carried out by INTRON. Institute for Material and Environmental Research BV, AA Balkema, Rotterdam. ISBN-10:905410127X.
  36. Berry EE, Hemmings RT, Cornelius BJ. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cem Concr Compos. 1990;12(4):253–61. doi: 10.1016/0958-9465(90)90004-H
  37. Berry EE, Hemmings R, Zhang MH, Cornelius BJ, Golden DM. Hydration in high-volume fly ash concrete binders. Mater J. 1994;91(4):382–9. doi:10.4067/S0718-50732010000300006
  38. Xu A, Sarkar SL. Microstructural development in high-volume fly-ash cement system. J Mater Civil Eng. 1994;6(1):117–36. http://worldcat.org/issn/08991561
DOI: https://doi.org/10.2478/msp-2023-0050 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 120 - 131
Submitted on: Jan 23, 2024
Accepted on: Mar 1, 2024
Published on: Apr 2, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 J. C. Juarez-Tapia, H. García-Ortiz, M. Pérez-Labra, J. A. Romero-Serrano, M. Reyes-Pérez, A. Hernández-Ramirez, V. Acosta-Sanchez, A.M. Teja-Ruiz, I.A. Reyes-Dominguez, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.