References
- Imbabi M, Carrigan C, McKenna S. Trends and developments in green cement and concrete technology. Int J Sustain Built Environ. 2012;1(2):94–216. doi:10.1016/j.ijsbe.2013.05.001
- Albitar M, Ali MM, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater. 2015;83:128–35. doi:10.1016/j.conbuildmat.2015.03.009
- Rahman MA, Sarker PK, Shaikh FUA, Saha AK. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag, Constr Build Mater. 2017;140:194–202. doi:10.1016/j.conbuildmat.2017.02.023
- ASTM C618 – 03, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (2003). https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20C618&item_s_key=00014875
- Bendapudi SCK. Contribution of fly ash to the properties of mortar and concrete. Int J Earth Sci Eng. 2011;04(06 SPL):1017–23. https://www.researchgate.net/publication/255963880_Contribution_of_Fly_ash_to_the_properties_of_Mortar_and_Concrete
- Malvar LJ, Lenke LR. Efficiency of fly ash in mitigating alkali silica reaction based on chemical composition. ACI Mater J. 2006;103(5):319–26. http://worldcat.org/oclc/13846872
- Yang J, Zeng L, He, Su Y, Li Y, Tan H, et al. Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Constr Build Mater. 2021;289:123157. doi:10.1016/j.conbuildmat.2021.123157
- Neville AM. 1995. Properties of concrete. Harlow, Essex: Addison Wesley Longman Limited. http://worldcat.org/isbn/0582230705
- Chindaprasirt P, Rukzon S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater. 2008;22(8):1601–6. doi:10.1016/j.conbuildmat.2007.06.010
- Supit SW, Shaikh FU, Sarker PK. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Constr Build Mater. 2014;51:278–86. doi: 10.1016/j.conbuildmat.2013.11.002
- Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem Concr Res. 2004;34(7):1087–92. doi:10.1016/j.cemconres.2003.11.021
- Cheerarot R, Jaturapitakkul C. A study of disposed fly ash from landfill to replace Portland cement. Waste Manag. 2004;24(7):701–9. doi:10.1016/j.wasman.2004.02.003
- Rukzon S, Chindaprasirt P. Strength and chloride resistance of blended Portland cement mortar containing palm oil fuel ash and fly ash. Int J Min Met Mater. 2009;16(4):475–81. doi: 10.1016/S1674-4799(09)60083-2
- Fu X, Wang Z, Tao W, Yang C, Hou W, Dong Y, Wu X. Studies on blended cement with a large amount of fly ash. Cem Concr Res. 2002;32(7):1153–9. doi:10.1016/S0008-8846(02)00757-3
- Elahi A. Properties of high performance concrete with supplementary cementitious materials. Doctoral dissertation. Taxila. Department of Civil Engineering, University of Engineering and Technology, Pakistan; 2009. http://prr.hec.gov.pk/jspui/bitstream/123456789/1054/1/713S.pdf
- Oner A, Akyuz S, Yildiz R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res. 2005;35(6):1165–71. doi:10.1016/j.cemconres.2004.09.031
- Mexican Standard. NMX-C-152-ONNCCE-2015 Industria de la Construcción-Cementantes hidráulicos a determinación de la densidad.
- Mexican Standard. NMX-C-049-ONNCCE-2015 Industria de la Construcción – Cementantes Hidráulicos – Método de Ensayo para la Determinación de la Finura de Cementantes Hidráulicos Mediante la Malla 0,045 Mm (No. 325).
- Mexican Standard. NMX-C-061-ONNCCE-2015 Industria de la Construcción – Cementos Hidráulicos – Determinación de la Resistencia a la Compresión de Cementantes Hidráulicos.
- Mexican Standard. NMX-C-056-ONNCCE-2019 Industria de la Construcción – Cementantes Hidráulicos – Determinación de la Finura de los Cementantes Hidráulicos
- Moghaddam F, Sirivivatnanon V, Vessalas K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud Constr Mater. 2019;10:e00218. doi:10.1016/j.cscm.2019.e0021
- Mexican Standard. (2017). NMX-C-414-ONNCCE-2017. Industria de la Construcción-Cementantes Hidráulicos-Especificaciones y Métodos de Ensayo. https://dof.gob.mx/nota_detalle.php?codigo=5510053&fecha=04/01/2018#gsc.tab=0
- Mexican Standard. (2014). NMX-C-486-ONNCCE-2014, Industria de la construcción – Mampostería – Mortero para uso estructural – Especificaciones y métodos de ensayo. https://www.dof.gob.mx/nota_detalle.php?codigo=5367564&fecha=07/11/2014#gsc.tab=0
- Echlin P. Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Secaucus, New Jersey; Springer Science & Business Media; 2011. https://link.springer.com/book/10.1007/978-0-387-85731-2
- Miguel PC, Jiménez JG, Giménez LE. Hormigón autocompactante expansivo. Diseño y eficacia en sistemas de refuerzo por confinamiento de pilares cilíndricos, (2012). https://dialnet.unirioja.es/servlet/tesis?codigo=52893
- Gomes S, François M. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem Concr Res. 2000;30(2):175–81. doi:10.1016/S0008-8846(99)00226-4
- Kutchko BG, Kim AG. Fly ash characterization by SEM–EDS. Fuel. 2006;85(17–18):2537–44. doi:10.1016/j.fuel.2006.05.016
- Cui Y, Wang L, Liu J, Liu R, Pang B. Impact of particle size of fly ash on the early compressive strength of concrete: experimental investigation and modelling. Constr Build Mater. 2022;323:126444. doi:10.1016/j.conbuildmat.2022.126444
- Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Chutubtim S. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cem Concr Compos. 2001;23(4–5):335–43. doi:10.1016/S0958-9465(01)00016-6
- Young G, Yang M. Preparation and characterization of Portland cement clinker from iron ore tailings. Constr Build Mater. 2019;197:152–6. doi:10.1016/j.conbuildmat.2018.11.236
- Giraldo MA, Tobón JI. Evolución mineralógica del cemento portland durante el proceso de hidratación. Dyna. 2006;73(148):69–81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532006000100007
- Carrete JC. La “portlandita”-hidróxido de calcio-y la “tobermorita”-silicatos de calcio hidratados-de la pasta de cemento: tratamiento estequiométrico de sus compartimentos. Cemento Hormigón. 2001;824:526–42. https://dialnet.unirioja.es/servlet/articulo?codigo=5528283
- Abo-El-Eein SA, Salem T, Hekal EE. Thermal and physicochemical studies on ettringite. il Cemento—Roma. 1988;85(1):47–85. https://scholar.google.com/citations?user=HEaSrGkAAAAJ&hl=th
- Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructure of blended cement paste. Constr Build Mater. 2007;21(7):1534–41. doi:10.1016/j.conbuildmat.2005.12.024
- Bijen J, Selst I. CUR Report 144. Fly ash as addition to concrete. Research carried out by INTRON. Institute for Material and Environmental Research BV, AA Balkema, Rotterdam. ISBN-10:905410127X.
- Berry EE, Hemmings RT, Cornelius BJ. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cem Concr Compos. 1990;12(4):253–61. doi: 10.1016/0958-9465(90)90004-H
- Berry EE, Hemmings R, Zhang MH, Cornelius BJ, Golden DM. Hydration in high-volume fly ash concrete binders. Mater J. 1994;91(4):382–9. doi:10.4067/S0718-50732010000300006
- Xu A, Sarkar SL. Microstructural development in high-volume fly-ash cement system. J Mater Civil Eng. 1994;6(1):117–36. http://worldcat.org/issn/08991561