Have a personal or library account? Click to login
Mechanical and corrosion properties of highly porous Ta-Nb-Sn alloy for intervertebral disc in spinal applications Cover

Mechanical and corrosion properties of highly porous Ta-Nb-Sn alloy for intervertebral disc in spinal applications

By: Berk Atay and  Ilven Mutlu  
Open Access
|Mar 2024

References

  1. Wenjuan W, Chenguang B, GuiBao Q, Qiang W. Processing and properties of porous titanium using space holder technique. Mater Sci Eng A. 2009;506:148–51.
  2. Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng C. 2013;33(3):1125–31.
  3. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.
  4. Ashby MF, Evans AG, Fleck NA, LJGibson, Hutchinson JW, Wadley HNG. Metal foams: a design guide. Boston, MA: Elsevier Science; 2000.
  5. Wang H, Li J, Yang H, Liu C, Ruan J. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering. Mater Sci Eng C. 2014;40:71–5.
  6. Ruperez E, Manero JM, Riccardi K, Li Y, Aparicio C, Gil FJ. Development of tantalum scaffold for orthopedic applications produced by space-holder method. Mater Des. 2015;83:112–9.
  7. Efe M, Kim HJ, Chandrasekar S, Trumble KP. The chemical state and control of oxygen in powder metallurgy Ttantalum. Mater Sci Eng A. 2012;544:1–9.
  8. Kim Y, Lee D, Hwang J, Ryu HJ, Hong SH.Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique. Mater Charact. 2016;114:225–33.
  9. Adamek G, Jakubowicz J. Tantalem foam made with sucrose as a space holder. IJRMHN=M. 2015;53:51–5.
  10. Yang H, Li J, Zhou Z, Ruan J. Structural preparation andbiocompatibility evaluation of highly porous tantalum scaffolds. Mater Lett. 2013;100:152
  11. Wauthle R, Stok JV, Yavari SA, Humbeeck JV, Kruth JP, Zadpoor AA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217–25.
  12. Kim Y, Kim E, Noh J, Lee S, Kwon Y, Oh IS. Fabrication and mechanical properties of powder metallurgy tantanum prepared by hot isostatic pressing. IJ R MHM. 2015;48:211–16.
  13. Papacci F, Rigante L Fernandez E Meglio M, Montano N. Anterior cervical discectomy and interbody fusion with porous tantalum implant: results in a series with long-term follow-up. J Clin Neurosci. 2016;33:159–62.
  14. Kasliwal MK, Baskin DS, Traynelis VC. Failure of porous tantalum cervical interbody fusion devices: two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech. 2013;26(5):239–45.
  15. Mobb RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18.
  16. Xu J, Xiao L, Zhang Y, Deng G, Liu G, Wu R, Shen H, Zhao X, Liu S, Cai Z. Ultra-high temperature oxidation resistance of a MoSi2 composite coating with TaB2 diffusion barrier on tantalum alloy. Corros Sci. 2023;224:111563.
  17. Hao Y, Ye Z, Wang L, Ye M, Dong H, Du Y, Wang C. Dual-electrolyte fabrication of micro arc oxidation coatings on Ta–12W alloy with enhanced wear resistance. Vacuum 2023;211:111698.
  18. Ma G, Zhao M, Xiang S, Zhu W, Wu G, Mao X. Effect of the severe plastic deformation on the corrosion resistance of a tantalum–tungsten alloy. Materials. 2022;15:7806.
  19. Browning PN, Alagic S, Carroll B, Kulkarni A, Matson L, Singh J. Room and ultrahigh mechanical properties of field assisted tantalum alloys. Mater Sci Eng A. 2017;680:41–51.
  20. Ma G, Wei Z, Wu G, Mao Z. Mater Sci Eng A. 2023;880:145312.
  21. Wang L, Hu X, Ma X, Ma Z, Zhang Y, Lu Y, et al. Colloids Surf B: Biointerfaces. 2016;148:440–52.
  22. Aguilar C, Martin FS, Martinez C, Camara B, Claverias F, Undabarrena A, et et al. Improving mechanical properties and antibacterial response of α/β ternary Tio-Ta foams for biomedical uses. J Mater Res Technol. 2023;24:8735–53.
  23. Kuo TY, Chin WH, Chien CS, Hsieh YH. Biocompatibility and corrosion of microplasma-sprayed titanium and tantalum coatings versus titanium alloy. Surf Coat Technol. 2019;372:399–409.
  24. Mareci D, Chelariu R, Dan I, Gordin DM, Gloriant T. Corrosion behaviour of β-Ti20Mo alloy in artificial saliva. J Mater Sci Mater Med. 2010;21:2907–13.
  25. Sharma M, Kumar AVR, Singh N, Adya N, Saluja B. Electrochemical corrosion behavior of dental/implant alloys in artificial saliva. J Mater Eng Perform. 2008;17:695–701.
  26. Ho WF, Wu SC, Lin CW, Hsu SKHC. Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride. J Appl Electrochem. 2011;41:337–43.
  27. Oshida Y, Sellers CB, Mirza K, Farzin-Nia F. Corrosion of dental metallic materials by dental treatment agents. Mater Sci Eng C. 2005;25:343–8.
  28. Lin FH, Hsu YS, Lin SH, Sun JS. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials. 2002;23:4029–38.
  29. Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact. 2002;49:73–9.
  30. Okazaki Y, Gotoh E. Conparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21.
DOI: https://doi.org/10.2478/msp-2023-0048 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 95 - 106
Submitted on: Dec 1, 2023
Accepted on: Feb 15, 2024
Published on: Mar 21, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Berk Atay, Ilven Mutlu, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.