Have a personal or library account? Click to login
Influence of mechanical activation on the behavior of green high-strength mortar including ceramic waste Cover

Influence of mechanical activation on the behavior of green high-strength mortar including ceramic waste

Open Access
|Mar 2024

Abstract

Solid waste management is a significant environmental issue for countries because of the need for huge landfills. The ceramic tile waste powder (CWP) is one of the wastes. Conversely, cement production, the main ingredient in concrete, emits large quantities of greenhouse gases, a significant environmental concern. Therefore, substituting some of the cement in concrete with CWP is an issue that deserves investigation to reduce the environmental impact of both materials. Accordingly, this study aims to investigate the influence of the grinding time and proportion of CWP as a substitute for cement on the properties of high-strength mortar (HSM). Three grinding times (10, 15, and 20 minutes) and three replacement percentages (10%, 20%, and 30% by weight) for CWP were adopted for each time. Ten mixtures (including the reference mixture) were executed. The fresh (flow rate), mechanical (compressive strength) durability (ultrasonic pulse velocity, dynamic elastic modulus, water absorption, density, percentage of voids and electrical resistivity) and microstructural properties were examined. The life cycle assessment (LCA) was also addressed. The results showed that the mechanical activation had a pronounced effect on the durability properties (especially water absorption and percentage of voids) more than on the compressive strength. Generally, a sustainable HSM (with more than 70 MPa of compressive strength) can be produced in which 30% of the cement was replaced with CWP with almost comparable performance to the CWP-free mortar. Furthermore, LCA results showed that mortars containing 30% CWP ground for 15 mins (GT15CWP30) had the lowest GWP per MPa.

DOI: https://doi.org/10.2478/msp-2023-0046 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 41 - 56
Submitted on: Jan 3, 2024
Accepted on: Feb 22, 2024
Published on: Mar 21, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mohammed Salah Nasr, Moslih Amer Salih, Ali Shubbar, Mayadah W. Falah, Aref A. Abadel, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.