Have a personal or library account? Click to login
Improving optical and morphological properties of Mn-doped ZnO via Ar ion sputtering followed by high-temperature UHV annealing Cover

Improving optical and morphological properties of Mn-doped ZnO via Ar ion sputtering followed by high-temperature UHV annealing

Open Access
|Nov 2023

References

  1. Kang Y, Yu F, Zhang L, Wang W, Chen S, Li Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021;360: 115544. doi.org/10.1016/j.ssi.(2020).115544
  2. Bui DP, Pham MT, Tran HH, Nguyen TD, Cao TM, Pham VV. Revisiting the key optical and electrical characteristics in reporting the photocatalysis of semiconductors, ACS Omega. 2021;6:27379–86. doi:10.26434/chemrxiv-2021-bs8xg
  3. Bousmaha M, BezzerroukMA, Kharroubi B, Akriche A, Naceur R, Hattabi I, Sandjak-Eddine K. Enhanced photocatalysis by depositing ZnO thin film in the inner wall of glass tube. Optik. 2019;183:727–31. doi:10.1016/j.ijleo.2019.02.111
  4. Liu S, Zhong Q, Guo W, Zhang W, Ya Y, Xia Y. Novel Platycladusorientalis–shaped Fe-doped ZnO hierarchical nanoflower decorated with Ag nanoparticles for photocatalytic application. J. Alloys Compd. 2021; 880:160501. doi: 10.1016/j.jallcom.2021.160501
  5. Bezzerrouk MA, Bousmaha M, Hassan M, Akriche A, Kharroubi B, Naceur R. Enhanced methylene blue removal efficiency of SnO2 thin film using sonophotocatalytic processes, Opt. Mater. 2021;117: 111116. doi:10.1016/j.optmat.2021.111116
  6. Aadnan I, Zegaoui O, ElMragui A, Daou I, Moussout H, Esteves da Silva JCG. Structural, optical and photocatalytic properties of Mn doped ZnO nanoparticles used as photocatalysts for Azo-dye degradation under visible light. Catalysts. 2022;12:1382. doi.org/10.3390/catal1211138
  7. Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey SP, Proffit DE, Mason TO. Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials. 2010;3:4892–914. doi:10.3390/ma3114892
  8. IShaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA. Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv. 2021; 11:23374, doi: 10.1039/d1ra04341b
  9. Jin C, Hao N, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z, Zhang JXJ. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens. Actuators A Phys. 2020;305:111912. doi.org/10.1016/j.sna.2020.111912
  10. Stara TR, Markevich IV. Influence of Mn doping on ZnO defect-related emission. Semicond Phys Quantum Electron Optoelectro. 2017;20(1):137–41. doi.org/10.15407/spqeo20.01.137
  11. Pradeev Raj K, Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Rafique RF, Thamiz Selvi R, Rathina Bala R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res Lett. 2018 Aug 3;13(1):229. doi: 10.1186/s11671-018-2643-x.
  12. Hou Q, Liu Y. Effects of Co doping and point defect on the ferromagnetism of ZnO. J Supercond Nov Magn. 2019;32, 1135–42. doi:10.1007/s10948-018-4987-y
  13. Bedrouni M, Kharroubi B, Ouerdane A, Bouslama M, Caudano Y, Bensassi KB, Bousmaha M, Bezzerrouk MA, Mokadem A, Abdelkrim M. Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Opt. Mater. 2021;111:110560. doi.org/10.1016/j.optmat.2020.110560
  14. Guezzoul M, Bouslama M, Ouerdane A, Mokadem A, Kharroubi B, Bedrouni M, Abdelkrim A, Abdellaoui A, Bensassi KB, Baizid A, Halati MS. Morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment. Appl Surf Sci. 2020;520:146302. doi: 10.1016/j.apsusc.2020.146302
  15. Nurfani E, Kesuma W, Lailani A, Anrokhi M, Kadja G, Rozana M, Sipahutar W, Arif M. Enhanced UV sensing of ZnO films by Cu doping. Opt Mater. 2021;114:110973. doi:10.1016/j.optmat.2021.110973
  16. Azizah N, Muhammady S, Purbayanto MAK, Nurfani E, Winata T, Sustini E, Widita R, Darma Y. Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Prog Nat Sci Mater Int. 2020;30:28–34. doi: 10.1016/j.pnsc.2020.01.006
  17. Sajjad M, Ullah I, Khan M, Khan J, Khan MY, Qureshi MT. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Physi 2018; 9:1301–9. doi: 10.1016/j.rinp.2018.04.010
  18. Kim D, Kim W, Jeon S, Yong K. Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, singlestep hydrothermal reaction. RSC Adv. 2017;7:40539. doi: 10.1039/c7ra07157d
  19. Abdelkrim M, Guezzoul M, Bedrouni M, Bouslama M, Ouerdane A, Kharroubi B. Effect of slight cobalt incorporation on the chemical, structural, morphological, optoelectronic, and photocatalytic properties of ZnO thin film. J. Alloys Compd. 2022;920:165703. doi.org/10.1016/j.jallcom.2022.165703
  20. Chen M, Liu P, He JH, Wang HL, Zhang H, Wang X, Chen R. Nanofiber template induced preparation of ZnO nanocrystal and its application in photocatalysis, Sci Rep. 2021;11:21196. doi.org/10.1038/s41598-021-00303-9
  21. Fathima N, Pradeep N, Balakrishnan VUJ. Growth and characterization of ZnO nanocones on flexible substrate by hydrothermal method. Mater Today Proc. 2019;9: 247–55. doi: 10.1016/j.matpr.2019.02.156
  22. Aravind A, Jayaraj M, ZnO-based dilute magnetic Ssemiconductors. In: Jayaraj MK, editor. Nanostructured metal oxides and devices. Singapore: Springer; 2020. p.233–69. doi: 10.1007/978-981-15-3314-3_8
  23. Pan F, Song C, Liu XJ, Yang YC, Zeng F. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater Sci Eng R: Rep. 2008;62:1–35. doi: 10.1016/j.mser.2008.04.002
  24. RBaghdad R, Kharroubi B, Abdiche A, Bousmaha M, Bezzerrouk MA, Zeinert A, Marssi ME, Zellama K. Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method. Superlattices Microstruct. 2012;52:711–21. doi.org/10.1016/j.spmi.2012.06.023
  25. Gallegos MV, Peluso MA, Thomas H, Damonte LC, Sambeth JE. Structural and optical properties of ZnO and manganese-doped ZnO, J. Alloys Compd. 2016;689:416–24. doi: 10.1016/j.jallcom.2016.07.283
  26. Alsmadi AKM, Salameh B, Shatnawi M. Influence of oxygen defects and their evolution on the Ferromagnetic ordering and band gap of Mn-doped ZnO films. J Phys Chem C. 2020;124:16116–26, doi.org/10.1021/acs.jpcc.0c04049
  27. Ilyas U, LeejP, Tan TL, Chen R, Anwar AW, Zhang S, Sun HD, Rawat RS. Temperature-dependent stoichiometric alteration in ZnO:Mn nanostructured thin films for enhanced ferromagnetic response. Appl Surf Sci. doi.org/10.1016/j.apsusc.2016.06.138
  28. Jing C, Jiang Y, Bai W, Chu J, Liu A. Synthesis of Mn-doped ZnO diluted magnetic semiconductors in the presence of ethyl acetoacetate under solvothermal conditions. J Magn Magn Mater. 2010;322:2395–400. doi:10.1016/j.jmmm.2010.02.044
  29. Panda J, Sasmal L, Nath TK. Magnetic and optical properties of Mn doped ZnO vertically aligned nanorods synthesized by hydrothermal technique. AIP Adv. 2016;6:035118. doi.org/10.1063/1.4944837
  30. Rajendran K, Banerjee S, Senthilkumaar S, Chini TK, Sengodan V. Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. 2008;11:6–12. doi:10.1016/j.mssp.2008.04.005
  31. Hajiashrafi S, Motakef Kazem I N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 2019;5:1–6. doi: 10.1016/j.heliyon.2019.e02152.
  32. Mikailzade F, Türkan H, Önal F, Zarbali M, Göktaş A, Tumbul A. Structural and magnetic properties of polycrystalline Zn1–xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique. Appl Phys A. 2021;127:1–8. doi: 10.1007/s00339-021-04519-4
  33. Shewale P, Lee S, Yu S. UV sensitive pulsed laser deposited ZnO thin films: influence of growth temperature. J Alloys Compd. 2018;744:849–58. doi: 10.1016/j.jallcom.2018.02.141
  34. Pereira dos Santos CI, De Giovanni Rodrigues A, Franco de Godoy MP. Growth and characterization of Mn-doped ZnO thin films. 18th Brazilian Workshop on Semiconductor Physics BWSP. 2017. doi: 10.17648/bwsp-2017-70009
  35. Wang J, Mei Y, Lu X, Fan X, Kang D, Xu P, Tan T. Effects of annealing pressureand Ar+ sputtering cleaning on Al-doped ZnO films. Appl Surf Sci. 2016;387:779–83. doi.org/10.1016/j.apsusc.2016.06.069
  36. Sun LJ, He DK, Xu SQ, Zhong Z, Wu XP, Lin BX, Fu ZX, Effect of hightemperature annealing on conductiontype ZnO films prepared by direct-current magnetron sputtering. Chin Phys Lett. 2010;27(12):126802. doi: 10.1088/0256-307X/27/12/126802
  37. Chang HY, Lin WC, Chu PC, Wang YK, Sogo M, Iida SI, Peng CJ, Miyayama T. Xray photoelectron spectroscopy equipped with gas cluster ion beams for evaluation of the sputtering behavior of various nanomaterials. ACS Appl Nano Mater. 2022. doi.org/10.1021/acsanm.2c00202
  38. Zaiter A, Michon A, Nemoz N, et al. Crystalline Quality and Surface Morphology Improvement of Face-to-Face Annealed MBE-Grown AlN on h-BN, Materials. 2022; 15(23):8602. doi.org/10.3390/ma1523860
  39. ArzuÇolak, HW, Zandvliet HJW, Poelsema B. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl Surf Sci. 2012;69:6938. doi.org/10.1016/j.apsusc.2012.03.138
  40. Yang S, Yan B, Lu L, Zeng K. Grain boundary effects on Li-ion diffusion in a Li1.2Co0.13Ni0.13MnO.54O2 thin film cathode studied by scanning probe microscopy technique. RSC Adv. 2016;6:94000. doi: 10.1039/c6ra17681j
  41. Pathak CS. Application of atomic force microscopy in organic and perovskite photovoltaics. In: Pathak CS, Kumar S, editors. Recent developments in atomic force microscopy and raman spectroscopy for materials characterization. book London, UK: IntechOpen; 2021. doi: 10.5772/intechopen.98478
  42. Mikhailov YM, Aleshin VV, Kolesnikova AM, Kovalev DY, Ponomarev VI. Flameless combustion synthesis of Ni and Ag nanoparticles in ballasted systems: atime-resolved X-ray diffraction study. Propellants Explos Pyrotech. 2015;40:88. doi: 10.1002/prep.201400049
  43. Murata K, Chihara H, Tsuchiyama A, Koike C, Takakura T, Noguchi T, Nakamura T. Crystallization experiments on amorphous silicates with chondritic composition: Quantitative formulation of the crystallization. Astrophys J. 2007;668:285. doi:10.1086/521017
  44. Niedermaier I, Kolbeck C, Steinrück HP, Florian M. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces. Rev Sci Instrum. 2016;87:045105. doi.org/10.1063/1.4942943
  45. Motaung DE, Kortidis I, Papadaki D, Nkosi SS, Mhlongo GH, Wesley-Smith J, Malgas GF, Mwakikunga BW, Coetsee E, Swart HC, Kiriakidis G, Ray SS. Defect-inducedmagnetism in undoped and Mn-doped wide band gap zinc oxidegrown by aerosol spray pyrolysis. Appl Surf Sci. 2014;311:14–26. doi: 10.1016/j.apsusc.2014.04.183
  46. Wang XL, Luan CY, Shao Q, Pruna A, Leung CW, Lortz R, Zapien JA, Ruotolo A. Effect of the magnetic order onthe room-temperature band-gap of Mn-doped ZnO thin films. Appl Phys Lett. 2013;102:102112. doi: 10.1063/1.4795797
  47. Eckelt F, Rothweiler P, Braun F, Voss L, AnkicaŠari, MV, Lützenkirchen-Hecht D. In situ observation of ZnO nanoparticle formation by a combination of time-resolved X-ray absorption spectroscopy and X-ray diffraction. Materials. 2022;15:8186. doi.org/10.3390/ma15228186
  48. Ahmed N, Majid A, Khan MA, Rashidi M, Umar ZA, Baig MA. Synthesis and characterization of Zn/ZnO microspheres on indented sites of silicon substrate. Mater Sci-Pol. 2018;36(3):501–8. doi: 10.2478/msp-2018-005
  49. Sahu S, Samanta PK. Peak profile analysis of X-ray diffraction pattern of zinc oxide nanostructure, J Nano Electron Phys. 2021;13:1–4. doi:10.21272/jnep.13(5).05001
  50. Das A, Wary RR, Nair RG. Mn-doped ZnO, role of morphological evolution on enhanced photocatalytic performance. Energy Rep. 2020;6:737–41. doi.org/10.1016/j.egyr.2019.11.148
  51. Rekha K, et al. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys B: Condensed Matter 2010405(15):3180–5. doi: 10.1016/j.physb.2010.04.042
  52. Gencer H, Goktas A, Gunes M, Mutlu H, Atalay S. Electrical transport and magnetoresistance properties of La0.67Ca0.33MnO3 film coated on pyrex glass substrate. Int J Mod Phys B. 2008;22:497–506. doi: 10.1142/S0217979208038776
  53. Vishwaroop R, Mathad SN. Synthesis, structural, WH plot and size-strain analysis of nano cobalt doped MgFe2O4 ferrite. Sci Sinter. 2020;52:349. doi: 10.2298/SOS2003349V
  54. Salameh B, Alsmadi A, Shatnawi M. Effects of Co concentration and annealingon the magnetic properties of Co-doped ZnO films: role of oxygen vacancies on theferromagnetic ordering, J. Alloys Compd. 2020;835:155287. doi: 10.1016/j.jallcom.2020.155287
  55. Tarwal N, Gurav K, Kumar TP, Jeong Y, Shim H, Kim I, Kim J, Jang J, Patil P. Structure, X-ray photoelectron spectroscopy and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. J Anal Appl Pyrolysis. 2014;106:26–32. doi: 10.1016/j.jaap.2013.12.005
  56. Toloman D, Mesaros A, Popa A, Raita O, Silipas TD, Vasile BS, Pana O, Giurgiu LM. Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. J. Alloys Compd. 2013;551:502–7. doi: 10.1016/j.jallcom.2012.10.183
  57. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N. Experimental and first-principles DFT studies on the band gap behaviours of microsized and nanosized Zn(1-x)MnxO materials. Phys Chem Chem Phys. 2019;21:19126–19146. doi: 10.1039/C9CP01664C
  58. Ianhez-Pereira C, Onofre YJ, Magon CJ, et al. The interplay between Mn valence and the optical response of ZnMnO thin films. Appl Phys A. 2020;126:337. doi.org/10.1007/s00339-020-03511-8
  59. Guo D, Wu Z, An Y, Li X, Guo X, Chu X, Sun C, Lei M, Li L, Cao L, Li P, Tang W. Room temperature ferromagnetism in (Ga1-x Mnx)2O3 epitaxial thin films. J Mater Chem C. 2015;3:1830–4. doi.org/10.1039/C4TC02833C
  60. Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. Evaluation of MnOx, Mn2 O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C. 2014;118:14073–81. doi.org/10.1021/jp500939d
  61. Yang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by Sol-Gel method. J Magn Magn Mater. 2013;334:52–8. doi: 10.1016/j.jmmm.2013.01.026
  62. Gao Q, Dai Y, Li C, Yang L, Li X, Cui C. Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. J. Alloys Compd. 2016;684:669–76. doi: 10.1016/j.jallcom.2016.05.227
  63. Velavan R, Balakrishnan G, Batoo KM, Raslan EH. Synthesis and characterization of pure and manganese (Mn) doped zinc oxide (ZnO) nanocrystallites for applications. J Civil Environ Eng. 2021;11:1–4
  64. Wang XL, Luan CY, Shao Q, Pruna A, Leung CW, Lortz R, Zapien JA, Ruotolo A. Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl Phys Lett. 2013;102:102112. doi: 10.1063/1.4795797
  65. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 2010;20:561–72. doi: 10.1002/adfm.200901884
  66. Bensassi KB, et al. A comparative study of un-doped ZnO and in doping ZnO thin films with various concentrations, subjected to appropriate UHV treatment and characterized by sensitive spectroscopy techniques XPS, AES, reels, and PL. Ann W Univ Timisoara-Phys. 2022;64(1):1–21. doi: 10.2478/awutp-2022-0001
  67. Haiping H, et al. Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures. Phys Chem Chem Phys. 2011;13(33):14902. doi: 10.1039/c1cp21527b
  68. Iribarren A, et al. Elucidating room-temperature optical transitions in annealed ZnO nanoparticles synthesized from an aqueous method. Mater Res Expr. 2019;6(10):105048. doi: 10.1088/2053-1591/ab3865
  69. Djurisic AB, Choy WCH, Roy VAL, Leung YH, Kwong CY, Cheah KW, Gundu Rao TK, Chan WK, Lui HF, Suryu C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv Func Mater. 2004;14:856. doi: 10.1002/adfm.200305082
  70. Mhlongo GH, et al. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl Surf Sci. 2016;390:804–15. doi: 10.1016/j.apsusc.2016.08.138
  71. Xu Y, et al. Passivation effect on ZnO films by SF6 plasma treatment. Crystals. 2019;9(5):236. doi: 10.3390/cryst9050236
  72. Lee SH, et al. Inorganic nano light-emitting transistor: p-type porous silicon nanowire/n-type ZnO nanofilm. Small. 2016;12(31):4222–8. doi: 10.1002/smll.201601205
  73. Djurišić AB, et al. ZnO nanostructures: growth, properties and applications. J Mater Chem. 2012;22(14):6526–35. doi.org/10.1039/C2JM15548F
  74. Fernando S, Nilius N, Freund HJ. STM luminescence spectroscopy of intrinsic defects in ZnO (0001) thin films. J Phys Chem Lett. 2013;4(22):3972–6. doi: 10.1021/jz401823c
DOI: https://doi.org/10.2478/msp-2023-0024 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 325 - 338
Submitted on: Mar 22, 2023
Accepted on: Sep 17, 2023
Published on: Nov 29, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Elhachemi Zehar, Abdallah Ouerdane, Boualem Chetti, Ali Çoruh, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.