Have a personal or library account? Click to login
PLA filament is not equal to PLA filament: Experimental studies of the influence of the type of pigment on the mechanical and thermal properties of poly(lactic acid) products
Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Tech. 2013;67(5/8): 1191–1203. doi:10.1007/s00170-012-4558-5
Gao W, Zhang Y, Ramanujan D et al. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Design. 2015;69: 65–89. doi:10.1016/j.cad.2015.04.001
Boydston AJ, Cao B, Nelson A et al. Additive manufacturing with stimuli-responsive materials. J. Mater. Chem. A. 2018; 6(42): 20621–45. doi:10.1039/C8TA07716A
Schwartz JJ, Hamel J, Ekstrom T et al.. Not all PLA filaments are created equal: an experimental investigation. Rapid Prototyping J. 2020;26(7): 1263–76. doi:10.1108/RPJ-06-2019-0179
Ngo TD, Kashani A, Imbalzano G et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B-Eng. 2018;143: 172–96. doi:10.1016/j.compositesb.2018.02.012.
Rouf S, Raina A, Ul Haq MI et al. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Adv. Ind. Eng. Polym. Res. 2022;5(3): 143–58. doi:10.1016/j.aiepr.2022.02.001
Huang Y, Leu MC, Mazumder J et al. Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 2015;137(1): 1–10. doi:10.1115/1.4028725
Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 2016;32(1), 54–64. doi:10.1016/j.dental.2015.09.018
Steenhuis HJ, Pretorius L. The additive manufacturing innovation: a range of implications: J. Manuf. Technol. Manag. 2017;28(1): 122–43. doi:10.1108/JMTM-06-2016-0081
Balletti C, Ballarin M, Guerra F. 3D printing: state of the art and future perspectives. J. Cult. Herit. 2017;26: 172–82. doi:10.1016/j.culher.2017.02.010
Soares JB, Finamor J, Silva FP et al. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototyping J. 2018;24(8): 1305–16. doi:10.1108/RPJ-09-2017-0177
Bamiduro O, Owolabi G, Haile MA et al. The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS. Rapid Prototyping J. 2019;25(3): 462–72. doi:10.1108/RPJ-04-2018-0087
Fernandes J, Deus AM, Reis L et al. Study of the influence of 3D printing parameters on the mechanical properties of PLA. Materials from 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 2018, 547-52
Chacon JM, Caminero MA, García-Plaza E et al. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Design. 2017;124: 143–57. doi:10.1016/j.matdes.2017.03.065
Lanzotti A, Grasso M, Staiano G et al. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping J. 2015;21(5): 604–17. doi:10.1108/RPJ-09-2014-0135
Benwood C, Anstey A, Andrzejewski J et al. Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid). ACS Omega. 2018;3(4): 4400–11. doi:10.1021/acsomega.8b00129
Singh S, Singh M, Prakash C et al. Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int. J. Adv. Manuf. Tech. 2019;102(5/8): 1–16. doi:10.1007/s00170-018-03276-8
Nguyen NA, Bowland CC, Naskar AK. A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Appl. Mater. Today. 2018;12: 138–52. doi:10.1016/j.apmt.2018.03.009
Davidson JR, Appuhamillage GA, Thompson CM et al. Design paradigm utilizing reversible Diels-Alder reactions to enhance the mechanical properties of 3D printed materials. ACS Appl. Mater. Inter. 2016;8(26): 16961–6. doi:10.1021/acsami.6b05118
Jin Y, Wan Y, Zhang B et al. Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J. Mater. Process. Tech. 2017;240: 233–9. doi:10.1016/j.jmatprotec.2016.10.003
Cristea M, Ionita D, Iftime MM. Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful? Materials. 2020;13(22), 5302–22. doi:10.3390/ma13225302
Müller AJ, Ávila M, Saenz G et al. CHAPTER 3. Crystallization of PLA-based Materials, in: Jiménez A, Peltzer M, Ruseckaite R (eds.) RSC Polymer Chemistry Series, No. 12. Cambridge: Royal Society of Chemistry; 2014. doi:10.1039/9781782624806-00066
Rueda MM, Auscher MC, Fulchiron R et al. Rheology and applications of highly filled polymers: a review of current understanding. Prog. Polym. Sci. 2017;66: 22–53. doi:10.1016/j.progpolymsci.2016.12.007
Wittbrodt B, Pearce JM. The effects of PLA colour on material properties of 3D printed components. Addit. Manuf. 2015;8: 110–6. doi:10.1016/j.addma.2015.09.006
Bociąga E, Postawa P, Trzaskalska M. Influence of coloring agents and injection process conditions on the mechanical properties of ABS. Polymer Processing, 2012;18(3): 143-146 (in Polish)
Bociąga E, Trzaskalska M. Influence of polymer processing parameters and coloring agents on gloss and color of acrylonitrile-butadiene-styrene terpolymer moldings. Polimery. 2021;61(7/8): 544–550. doi: 10.14314/polimery.2016.544
Valerga AP, Batista M, Salguero J et al. Influence of PLA filament conditions on characteristics of FDM parts. Materials. 2018;11(8): 1322. doi:10.3390/ma11081322
Standardization roadmap for additive manufacturing V.2.0, America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), Jun 2018, USA
Bigg DM. Polylactide copolymers: Effect of copolymer ratio and end capping on their properties. Adv. Polym. Tech. 2005;24(2): 69–82. doi:10.1002/adv.20032
Pyda M, Czerniecka-Kubicka A. Thermal Properties and Thermodynamics of Poly(l-lactic acid. in: Di Lorenzo ML, Androsch R. (eds.) Synthesis, Structure and Properties of Poly(lactic acid). Cham: Springer International Publishing; 2018, 153. doi:10.1007/978-3-319-64230-7
Hortos M, Vinas M, Espino S et al. Influence of temperature on high molecular weight poly(lactic acid) stereocomplex formation. Express Polym. Lett. 2019;13(2): 123–34. doi:10.3144/expresspolymlett.2019.12
Gracia-Fernández CA, Gómez-Barreiro S, López-Beceiro J et al. New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J. Mater. Res. 2012;27(10): 1379–82. doi:10.1557/jmr.2012.57
Foglia F, De Meo A, Iozzino V et al. Isothermal crystallization of PLA: Nucleation density and growth rates of α and α′ phases. Can. J. Chem. Eng. 2020;98(9): 19982007. doi:10.1002/cjce.23818
Mathot VBF. Crystallization of polymers: A personal view on a lifetime in research. J. Therm. Anal. Calorim. 2010;102(2): 403–12. doi:10.1007/s10973-010-0947-x