Have a personal or library account? Click to login
Tribosynthesis of friction films and their influence on the functional properties of copper-based antifriction composites for printing machines Cover

Tribosynthesis of friction films and their influence on the functional properties of copper-based antifriction composites for printing machines

Open Access
|May 2023

References

  1. Neale MJ. The tribology handbook. 2nd ed. Elsevier Ltd. All rights reserved, editor. Oxford: Butterworth-Heinemann; 1996. https://doi.org/10.1016/B978-0-7506-1198-5.X5000-0.
  2. Simmons CH, Maguire DE, Phelps N. 35 - Bearings and applied technology. In: Simmons CH, Maguire DE, Phelps NBTM of ED. 5th ed. Oxford: Butterworth-Heinemann; 2020. p. 519–45. https://doi.org/10.1016/B978-0-12-818482-0.00035-9.
  3. Guangrong H XT. Copper-based alloy sliding-bearing material and preparation method thereof. Patent. China; CN103602849A, 2016. https://patents.google.com/patent/CN103602849A/en.
  4. Samal P, Newkirk J. Powder Metallurgy. ASM International; 2015. https://doi.org/10.31399/asm.hb.v07.9781627081757.
  5. Liu Q, Castillo-Rodríguez M, Galisteo AJ, Guzmán de Villoria R, Torralba JM. Wear behavior of copper–graphite composites processed by field-assisted hot pressing. J Compos Sci. 2019; 3(1): 29. https://doi.org/10.3390/jcs3010029.
  6. Wu G, Xu C, Xiao G, Yi M. Recent progress in self-lubricating ceramic composites. In: Menezes PL, Rohatgi PK, Omrani E, (eds.) Self-lubricating composites. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p. 133–54. https://doi.org/10.1007/978-3-662-56528-5_5.
  7. Li R, Yin Y, Zhang K, Song R, Chen Q. Effects of ball milling and load on transfer film formation of copper-based composites. Ind Lubr Tribol. 2022;74(9):1056–62. https://doi.org/10.1108/ILT-04-2022-0119.
  8. Hoganas Handbook for Sintered Components: Material and Powder Properties. 1997. https://books.google.pl/books?id=wl9OtAEACAAJ.
  9. Stojadinović S, Tadić N, Vasilić R. Plasma electrolytic oxidation of hafnium. Int J Refract Met H. 2017;69:153–7. https://doi.org/10.1016/j.ijrmhm.2017.08.011.
  10. Konopka K, Roik TA, Gavrish AP, Vitsuk YY, Mazan T. Effect of CaF2 surface layers on the friction behavior of copper-based composite. Powder Metall Met Ceram. 2012;51(5):363–7. https://doi.org/10.1007/s11106-012-9441-2.
  11. Roik TA, Gavrish AP, Kirichok PA, Vitsyuk YY. Effect of secondary structures on the functional properties of high-speed sintered bearings for printing machines. Powder Metall Met Ceram. 2015;54(1):119–27. https://doi.org/10.1007/s11106-015-9688-5.
  12. Kurzawa A, Roik T, Gavrysh O, Vitsiuk I, Bocian M, Pyka D, Zajac P, Jamroziak K. Friction mechanism features of the nickel-based composite antifriction materials at high temperatures. Coatings. 2020; 10(5): 454. https://doi.org/10.3390/coatings10050454.
  13. Mohan S, Anand A, Arvind Singh R, Jayalakshmi S, Chen X, Konovalov S. Friction and wear study of Fe-Cu-C-CaF2 self-lubricating composite at high speed and high temperature. IOP Conf Ser: Mater Sci Eng. 2020;834(1):12010. https://dx.doi.org/10.1088/1757-899X/834/1/012010.
  14. Roik TA, Gavrish OA, Vitsiuk II. The phase composition and structure of the antifriction copper-based composite and their influence on tribological properties. Powder Metall Met Ceram. 2021;60(3):191–7. https://doi.org/10.1007/s11106-021-00227-z.
  15. Jamroziak K, Roik T, Gavrish O, Vitsiuk I, Lesiuk G, Correia JAFO, De Jesus A. Improved manufacturing performance of a new antifriction composite parts based on copper. Eng Fail Anal. 2018;91: 225–233. https://doi.org/10.1016/j.engfailanal.2018.04.034.
  16. Roik TA, Gavrysh OA, Vitsiuk II, Khmiliarchuk OI. New copper-based composites for heavy-loaded friction units. Powder Metall Met Ceram. 2018;56(9):516–22. https://doi.org/10.1007/s11106-018-9924-x.
  17. Roik T, Jamroziak K, Lesiuk G, Gavrish OA, Vitsiuk J. Copper based anti-friction composite material. Patent. Poland: PL237229, 2019. https://api-ewyszukiwarka.pue.uprp.gov.pl/api/collection/7b74f34630c6a414f465b09b7beb407a.
  18. Roik TA, Gavrysh OA, Vitsiuk II. Antifriction composite material based on copper. Patent. Ukraine: UA135076 IPC, 2019.
  19. John M, Menezes PL. Self-lubricating materials for extreme condition applications. Materials. 2021; 14(19): 5588. https://doi.org/10.3390/ma14195588.
  20. Ouyang JH, Li YF, Zhang YZ, Wang YM, Wang YJ. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants. 2022;10(8):177. https://doi.org/10.3390/lubricants10080177.
  21. Kyrychok PO, Roik TA, Gavrish AP, Shevchuk AV VY. New composite materials for friction parts of printing machines. Kyiv: NTUU KPI, Ukraine; 2015.
  22. Bhushan B. Introduction to tribology. 2nd Editio. John Wiley & Sons, Ltd; 2013. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118403259.
  23. Migranov MS, Mukhamadeev VR, Migranov AM, Mukhamadeev IR, Khazgalieva AA. The improvement of the tribotechnical properties of materials and coatings for metal cutting tool. IOP Conf Ser Mater Sci Eng. 2018;447(1):12083. https://dx.doi.org/10.1088/1757-899X/447/1/012083.
  24. Purushotham G, Hemanth J. Action of chills on microstructure, mechanical properties of chilled ASTM A 494M grade nickel alloyreinforced with fused SiO2 metal matrix composite. Proc Mat Sci. 2014;5:426–33. https://doi.org/10.1016/j.mspro.2014.07.285.
  25. Olaleye K, Roik T, Kurzawa A, Gavrysh O, Vitsiuk I, Jamroziak K. Structure formation in antifriction composites with a nickel matrix and its effect on properties. Materials. 2022;15(9):3404. https://doi.org/10.3390/ma15093404.
  26. Avram V, Csaki I, Mates I, Stoica NA, Stoica AM, Semenescu A. The effect of Ca and Mg on the microstructure and tribological properties of YPbSn10 antifriction alloy. Materials. 2022;15(9):3289. https://www.mdpi.com/1996-1944/15/9/3289.
  27. Su L, Gao F, Han X, Chen J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol Int. 2015;90:420–5. https://doi.org/10.1016/j.triboint.2015.05.003.
  28. Rodrigues ACP, Yonamine T, Albertin E, Sinatora A, Azevedo CRF. Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest. Wear. 2015;330–331:70–8. https://doi.org/10.1016/j.wear.2015.02.006.
  29. Berge P, Pomeau Y, Vidal C, Ruelle D, Tuckerman LS. Order within chaos: Towards a deterministic approach to turbulence. New York, Paris SE: Wiley; Hermann; 1984.
  30. Bowden FP. Introduction to the discussion: the mechanism of friction. Proc R Soc Lon A. 1952;212:440–9. http://doi.org/10.1098/rspa.1952.0093.
  31. Wang Z. A universal bifurcation mechanism arising from progressive hydroelastic waves. Theor Appl Mech Lett. 2022;12(1):100315. https://doi.org/10.1016/j.taml.2021.100315.
DOI: https://doi.org/10.2478/msp-2022-0051 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 147 - 157
Submitted on: Feb 9, 2023
Accepted on: Mar 18, 2023
Published on: May 2, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Kayode Olaleye, Tetiana Roik, Adam Kurzawa, Oleg Gavrysh, Dariusz Pyka, Mirosław Bocian, Krzysztof Jamroziak, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.