Have a personal or library account? Click to login
First-principle study on the effect of S/Se/Te doping and VZn-Hi coexistence on ZnO electrical conductivity Cover

First-principle study on the effect of S/Se/Te doping and VZn-Hi coexistence on ZnO electrical conductivity

Open Access
|Mar 2023

Figures & Tables

Fig. 1

Model: (A) Zn36O36, (B) Zn35RO35 (R = S/Se/Te), and (C) Zn35RHiO35 (R = S/Se/Te).Gray, red, yellow, and green represent Zn, O, R (R = S/Se/Te), and H atoms, respectively
Model: (A) Zn36O36, (B) Zn35RO35 (R = S/Se/Te), and (C) Zn35RHiO35 (R = S/Se/Te).Gray, red, yellow, and green represent Zn, O, R (R = S/Se/Te), and H atoms, respectively

Fig. 2

Relationship between total energy of Zn36O36 and cutoff energy
Relationship between total energy of Zn36O36 and cutoff energy

Fig. 3

Formation energies of 



Zn35RO35a1−a3
{\rm{Zn}_{35}}{\rm{RO}}_{35}^{a1 - a3}


 (R = S/Se/Te) systems with different relative distances between R substitution atoms and VZn
Formation energies of Zn35RO35a1−a3 {\rm{Zn}_{35}}{\rm{RO}}_{35}^{a1 - a3} (R = S/Se/Te) systems with different relative distances between R substitution atoms and VZn

Fig. 4

Formation energies of the 



Zn35RHib1−b3O35a1
{\rm{Zn}_{35}}{\rm{RH}_{\rm{i}}}^{b1 - b3}{\rm{O}}_{35}^{a1}


 (R = S/Se/Te) system with different positions of b1, b2, and b3 in the Hi
Formation energies of the Zn35RHib1−b3O35a1 {\rm{Zn}_{35}}{\rm{RH}_{\rm{i}}}^{b1 - b3}{\rm{O}}_{35}^{a1} (R = S/Se/Te) system with different positions of b1, b2, and b3 in the Hi

Fig. 5

Band structure of pure Zn36O36
Band structure of pure Zn36O36

Fig. 6

Band structure distribution: (A) Zn35SO35; (B) Zn35SeO35; (C) Zn35TeO35; (D) Zn35SHiO35; (E) Zn35SeHiO35; and (F) Zn35TeHiO35
Band structure distribution: (A) Zn35SO35; (B) Zn35SeO35; (C) Zn35TeO35; (D) Zn35SHiO35; (E) Zn35SeHiO35; and (F) Zn35TeHiO35

Fig. 7

DOS analysis diagram: (A) Zn36O36, (B) Zn35SO35, (C) Zn35SeO35, and (D) Zn35SHiO35. DOS, density of states
DOS analysis diagram: (A) Zn36O36, (B) Zn35SO35, (C) Zn35SeO35, and (D) Zn35SHiO35. DOS, density of states

Relative distance d between the replacement atoms and VZn; the reduced lattice constants a and c and volume V of Zn36O36, Zn35RO35 (R = S/Se/Te)a1−a3, and Zn35RHib1−b3O35a2 {\rm{Zn}_{35}}{\rm{R}}{{\rm{H}}_{\rm{i}}}^{b1 - b3}{\rm{O}}_{35}^{a2} (R = S/Se/Te) doping systems

ModelsdM − VZn (Å)a (Å)c (Å)V (Å3)
Zn36O36a = 3.287c = 5.29949.485
Zn35SO35a1 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a1} 1.992a = 3.301c = 5.29849.988
Zn35SO35a2 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a2} 3.811a = 3.303c = 4.95550.490
Zn35SO35a3 {\rm{Zn}_{35}}{\rm{SO}}_{35}^{a3} 4.570a = 3.303c = 5.33450.385
Zn35SeO35a1 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a1} 1.992a = 3.304c = 5.29450.047
Zn35SeO35a2 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a2} 3.811a = 3.307c = 5.35150.708
Zn35SeO35a3 {\rm{Zn}_{35}}{\rm{SeO}}_{35}^{a3} 4.570a = 3.307c = 5.33850.584
Zn35TeO35a1 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a1} 1.992a = 3.308c = 5.29550.204
Zn35TeO35a2 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a2} 3.811a = 3.316c = 5.37351.131
Zn35TeO35a3 {\rm{Zn}_{35}}{\rm{TeO}}_{35}^{a3} 4.570a = 3.315c = 5.34450.927
Zn35SHib1O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992a = 3.307c = 5.31650.332
Zn35SHib2O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992a = 3.332c = 5.28950.427
Zn35SHib3O35a1 {\rm{Zn}_{35}}{\rm{SH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992a = 3.314c = 4.96850.546
Zn35SeHib1O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992a = 3.309c = 5.31650.402
Zn35SeHib2O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992a = 3.334c = 5.28650.468
Zn35SeHib3O35a1 {\rm{Zn}_{35}}{\rm{SeH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992a = 3.316c = 5.31750.607
Zn35TeHib1O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b1}{\rm{O}}_{35}^{a1} 1.992a = 3.317c = 5.32250.620
Zn35TeHib2O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b2}{\rm{O}}_{35}^{a1} 1.992a = 3.345c = 5.29350.690
Zn35TeHib3O35a1 {\rm{Zn}_{35}}{\rm{TeH}_{\rm{i}}}^{b3}{\rm{O}}_{35}^{a1} 1.992a = 3.325c = 5.32250.825

Hole concentrations of the Zn36O36, Zn35SO35, Zn35SeO35, and Zn35SHiO35 systems

ModelsPi (×1021 cm−3)
Zn36O360
Zn35SO352.80
Zn35SeO352.42
Zn35SHiO351.74

Conductivities of the Zn36O36, Zn35SO35, Zn35SeO35, and Zn35SHiO35 systems

Modelsσi (×102 S·cm−1)

G→ FG→ Z
Zn36O3600
Zn35SO35464.390.26
Zn35SeO3527.080.014
Zn35SHiO3594.04474.11

Effective mass, elastic modulus, deformation potential, and hole mobility of Zn35RO35 (R = S/Se/Te) and Zn35RHiO35 (R = S/Se/Te) systems

ModelsDirectionmh*·mo−1c3D (×1011J·m−2)EI(eV)μh (cm2·V−1·s−1)
Zn36O36‖ a0.22000
0.21 [35]000
‖ c0.17000
0.24 [35]000
Zn35SO35‖ a6.9154.175.07103.60
‖ c137.8943.124.540.058
Zn35SeO35‖ a35.9368.792.806.698
‖ c744.9967.352.770.004
Zn35TeO35‖ a7.23123.7344.742.707
‖ c5.06136.33146.966.625
Zn35SHiO35‖ a19.7082.692.9633.795
‖ c10.3157.792.47170.383
Zn35SeHiO35‖ a12.0295.6420.542.79
‖ c2.2571.0117.70183.061
Zn35TeHiO35‖ a9.69118.4738.631.674
‖ c1.74104.5036.28122.634
DOI: https://doi.org/10.2478/msp-2022-0047 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 54 - 63
Submitted on: Jan 17, 2023
Accepted on: Feb 26, 2023
Published on: Mar 30, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Yulan Gu, Qingyu Hou, Mude Qi, Xiang Yin, Zhichao Wang, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.