Have a personal or library account? Click to login
The ability of different types of sand to preserve the integrity of calcium sulfoaluminate cement cement mortar during exposure to elevated temperatures
Wiggenhauser H, Köpp C, Timofeev J, Azari H. Controlled Creating of Cracks in Concrete for Nondestructive testing. Journal of Nondestructive Evaluation. 2018; 37: 67. https://doi.org/10.1007/s10921-018-0517-x
Huynh T P, Vo D H, Hwang C L. Engineering and durability properties of eco-friendly mortar using cement-free SRF binder. Construction and Building Materials. 2018; 160:145–155. https://doi.org/10.1016/j.conbuildmat.2017.11.040
Hasar U C, Izginli M, Ozturk H, Korkmaz H, Cevik A, Irshidat M R. Surface curing effect on reflection response of hardened cementitious mortar samples. Measurement. 2021; 185: 110026. https://doi.org/10.1016/j.measurement.2021.110026
Hossain M M, Karim M R, Hossain M K, Islam M N, Zaina M F M. Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review. Construction and Building Materials. 2015; 93: 95–109. https://doi.org/10.1016/j.conbuildmat.2015.05.094
Lee H S, Balasubramanian B, Gopalakrishna G V T, Kwond S J, Karthick S P, Saraswathy V. Durability performance of CNT and nanosilica admixed cement mortar. Construction and Building Materials. 2018; 159: 463–472. https://doi.org/10.1016/j.conbuildmat.2017.11.003
Soulios V, Jan de Place Hansen E, Peuhkuri R, Møller E, Ghanbari-Siahkalic A. Durability of the hydrophobic treatment on brick and mortar. Building and Environment. 2021; 201: 107994. https://doi.org/10.1016/j.buildenv.2021.107994
Baali L, Naceri A, Rahmouni Z, Mehidi M W N. Experimental Study of the Possibility to Make a Mortar with Ternary Sand Natural and Artificial Fine Aggregates. International Conference on Physics Science and Technology. 2011; 1875–3892 doi:10.1016/j.phpro.2011.11.044
Kim Y Y, Lee K M, Bang J W, Kwon S J. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount. Advanced material science engineering. 2014; 273460. https://doi.org/10.1155/2014/273460
Antoni A, Chandra L, Hardjito D. The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar. Procedia Engineering. 2015; 125:773–779. https://doi:10.1016/j.proeng.2015.11.132
Kwon S J, Feng M Q, Park S S. Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar. NDT&E International. 2010; 86–95. https://doi.org/10.1016/j.ndteint.2009.09.002
Maria da Luz Garcia, Sousa-Coutinho J. Strength and durability of cement with forest waste bottom ash. Construction and Building Materials. 2013; 41: 897–910. https://doi.org/10.1016/j.conbuildmat.2012.11.081
Bogas A J, Gomes A. A simple mix design method for structural lightweight aggregate concrete. Materials and Structures. 2013; 46: 1919–1932. https://doi.org/10.1617/s11527-013-0029-1
Fahmi H M, Polivka M, Bresler B. Effects of sustained and cyclic elevated temperature on creep of concrete. Cement and Concrete Research. 1972, 2(5): 591–606. https://doi.org/10.1016/0008-8846(72)90113-5
Cagnon H, Vidal T, Sellier A. Transient thermal deformation of high performance concrete in the range 20°C–40°C. Cement and Concrete Research. 2019, 116: 19–26. https://doi.org/10.1016/j.cemconres.2018.11.001
Liu S, Kong Y, Wan T. Effects of thermal-cooling cycling curing on the mechanical properties of EVA-modified concrete. Construction and Building Materials. 2018, 165: 443–450. https://doi.org/10.1016/j.conbuildmat.2018.01.060
Oje A M, Ogwu A A, Rahman S U. Effect of temperature variation on the corrosion behavior and semi-conducting properties of the passive film formed on chromium oxide coatings exposed to saline solution. Corrosion Science. 2019, 154: 28–35. https://doi.org/10.1016/j.corsci.2019.04.004
Díaz B, Guitian B, Novoa X R. The effect of long-term atmospheric aging and temperature on the electrochemical behavior of steel rebar's in mortar. Corrosion Science. 2018, 140: 143–150. https://doi:10.1016/j.corsci.2018.06.007
Zhu N, Jin F, Kong X, Xu Y, Zhou J, Wang B, Wu H. Interface and anti-corrosion properties of sea-sand concrete with fumed silica. Construction and Building Materials. 2018, 1085–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.040
Yu H; Meng T, Zhao Y, Liao J, Ying K. Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Studies in Construction Materials. 2022, e01286. https://doi.org/10.1016/j.cscm.2022.e01286
Zhang J, Li D, Wang Y. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. Journal of Cleaner Production. 2020, 120665. https://doi.org/10.1016/j.jclepro.2020.120665
Tchekwagep J J K, Shoude W, Mukhopadhyay A K, Shifeng H, Xin C. The Impact of Extended Heat Exposure on Rapid Sulphoaluminate Cement Concrete Up To 120°C. Periodica Polytechnica Civil Engineering. 2021;18. https://doi.org/10.3311/PPci.17122
Tchekwagep J J K, Piqi Z, Shoude W, Shifeng H, Xin C. The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature. Materials Science Poland. 2021; 75–85. https://doi:10.2478/msp-2021-0006
Tchekwagep J J K, Shoude W, Mukhopadhyay A K, Shifeng H, Xin C. 2020. Strengths of Sulphoaluminate Cement Concrete and Ordinary Portland cement Concrete after Exposure to High Temperatures. Ceramics-Silikáty. 2020; 227–238. https://doidoi:10.13168/cs.2020.0012
Swaidani A M; Baddoura M K; Aliyan S D; Choe W. Assessment of Alkali Resistance of Basalt Used as Concrete Aggregates. Journal of civil engineering. 2015, 10, https://doi:10.1515/sspjce-2015-0014
Akhtar M N, Ibrahim Z, Muhamad B Ni, Jameel M, Tarannum N, Akhtar J N. Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials. 2021, 122404. https://doi.org/10.1016/j.conbuildmat.2021.122404
Yi H, Oh K, Kou R, Qiao Y. Sand-filler structural material with a low content of polyethylene binder. Sustainable Materials and Technologies. 2020, e00194. https://doi.org/10.1016/j.susmat.2020.e00194
Singh S, Nagar R, Agrawal V. A review on Properties of Sustainable Concrete using granite dust as replacement for river sand. Journal of Cleaner Production. 2016, 74–87. https://doi.org/10.1016/j.jclepro.2016.03.114
Branston J, Das S, Kenno S Y, Taylor C. Mechanical behavior of basalt fiber reinforced concrete. Construction and Building Materials, 2016, 878–886. https://doi.org/10.1016/j.conbuildmat.2016.08.009
Rostásy F S, Weiβ G R, Wiedemann. Changes of pore structure of cement mortars due to temperature. Cement and Concrete Research. 1980, 10: 157–164. https://doi.org/10.1016/0008-8846(80)90072-1
Yufeng F, Qiang Z, Dengquan W. Comparing Permeability and Drying Shrinkage of the Concrete Containing Mineral Admixtures under the Equal Strength Grade. Minerals. 2022, 12(11), 1477; https://doi.org/10.3390/min12111477
Jolanta B L, Piotr B, Jarosław B, Roman B, Elżbieta H. Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials (Basel). 2021 Jan; 14(1): 148. https://doi:10.3390/ma14010148
Kouadjo Tchekwagep J J, Dangui C, Mukhopadhyay A K, Shoude W, Shifeng H, Xin C. Quantitative Rietveld analysis of the decomposition of hardened rapid sulphoaluminate cement after exposure to elevated temperatures. Archives of Civil and Mechanical Engineering. 2021, 119. https://doi.org/10.1007/s43452-021-00265-9
Khan M, Abbas H. Performance of concrete subjected to elevated temperature. European Journal of Environmental and Civil Engineering. 2016, 20: 532–543. https://doi.org/10.1080/19648189.2015.1053152
Maanser A, Benouis A, Ferhoune N. Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials. 2018, 166:916–921. https://doi.org/10.1016/j.conbuildmat.2018.01.181
Faisal A, Waleed A, Qais F. Effect of high temperature and type of cooling on some mechanical properties of cement mortar. MATEC Web of Conferences. 2018, 162. https://doi.org/10.1051/matecconf/201816202010
Safaa A M, Rwayda K S A, Teba T K. Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash. Innovative Infrastructure Solutions. 2020, 20, 1. https://doi.org/10.1007/s41062-020-0274-4