Have a personal or library account? Click to login
The ability of different types of sand to preserve the integrity of calcium sulfoaluminate cement cement mortar during exposure to elevated temperatures Cover

The ability of different types of sand to preserve the integrity of calcium sulfoaluminate cement cement mortar during exposure to elevated temperatures

Open Access
|Mar 2023

References

  1. Wiggenhauser H, Köpp C, Timofeev J, Azari H. Controlled Creating of Cracks in Concrete for Nondestructive testing. Journal of Nondestructive Evaluation. 2018; 37: 67. https://doi.org/10.1007/s10921-018-0517-x
  2. Huynh T P, Vo D H, Hwang C L. Engineering and durability properties of eco-friendly mortar using cement-free SRF binder. Construction and Building Materials. 2018; 160:145–155. https://doi.org/10.1016/j.conbuildmat.2017.11.040
  3. Hasar U C, Izginli M, Ozturk H, Korkmaz H, Cevik A, Irshidat M R. Surface curing effect on reflection response of hardened cementitious mortar samples. Measurement. 2021; 185: 110026. https://doi.org/10.1016/j.measurement.2021.110026
  4. Hossain M M, Karim M R, Hossain M K, Islam M N, Zaina M F M. Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review. Construction and Building Materials. 2015; 93: 95–109. https://doi.org/10.1016/j.conbuildmat.2015.05.094
  5. Lee H S, Balasubramanian B, Gopalakrishna G V T, Kwond S J, Karthick S P, Saraswathy V. Durability performance of CNT and nanosilica admixed cement mortar. Construction and Building Materials. 2018; 159: 463–472. https://doi.org/10.1016/j.conbuildmat.2017.11.003
  6. Soulios V, Jan de Place Hansen E, Peuhkuri R, Møller E, Ghanbari-Siahkalic A. Durability of the hydrophobic treatment on brick and mortar. Building and Environment. 2021; 201: 107994. https://doi.org/10.1016/j.buildenv.2021.107994
  7. Baali L, Naceri A, Rahmouni Z, Mehidi M W N. Experimental Study of the Possibility to Make a Mortar with Ternary Sand Natural and Artificial Fine Aggregates. International Conference on Physics Science and Technology. 2011; 1875–3892 doi:10.1016/j.phpro.2011.11.044
  8. Abdelrahman, Abushana, Alnahhal W. Combined effects of treated domestic wastewater, fly ash, and calcium nitrite toward concrete sustainability. Journal of Building Engineering. 2021; 44: 103240. https://doi.org/10.1016/j.jobe.2021.103240
  9. Kim Y Y, Lee K M, Bang J W, Kwon S J. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount. Advanced material science engineering. 2014; 273460. https://doi.org/10.1155/2014/273460
  10. Antoni A, Chandra L, Hardjito D. The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar. Procedia Engineering. 2015; 125:773–779. https://doi:10.1016/j.proeng.2015.11.132
  11. Kwon S J, Feng M Q, Park S S. Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar. NDT&E International. 2010; 86–95. https://doi.org/10.1016/j.ndteint.2009.09.002
  12. Maria da Luz Garcia, Sousa-Coutinho J. Strength and durability of cement with forest waste bottom ash. Construction and Building Materials. 2013; 41: 897–910. https://doi.org/10.1016/j.conbuildmat.2012.11.081
  13. Bogas A J, Gomes A. A simple mix design method for structural lightweight aggregate concrete. Materials and Structures. 2013; 46: 1919–1932. https://doi.org/10.1617/s11527-013-0029-1
  14. Fahmi H M, Polivka M, Bresler B. Effects of sustained and cyclic elevated temperature on creep of concrete. Cement and Concrete Research. 1972, 2(5): 591–606. https://doi.org/10.1016/0008-8846(72)90113-5
  15. Cagnon H, Vidal T, Sellier A. Transient thermal deformation of high performance concrete in the range 20°C–40°C. Cement and Concrete Research. 2019, 116: 19–26. https://doi.org/10.1016/j.cemconres.2018.11.001
  16. Liu S, Kong Y, Wan T. Effects of thermal-cooling cycling curing on the mechanical properties of EVA-modified concrete. Construction and Building Materials. 2018, 165: 443–450. https://doi.org/10.1016/j.conbuildmat.2018.01.060
  17. Oje A M, Ogwu A A, Rahman S U. Effect of temperature variation on the corrosion behavior and semi-conducting properties of the passive film formed on chromium oxide coatings exposed to saline solution. Corrosion Science. 2019, 154: 28–35. https://doi.org/10.1016/j.corsci.2019.04.004
  18. Díaz B, Guitian B, Novoa X R. The effect of long-term atmospheric aging and temperature on the electrochemical behavior of steel rebar's in mortar. Corrosion Science. 2018, 140: 143–150. https://doi:10.1016/j.corsci.2018.06.007
  19. Zhu N, Jin F, Kong X, Xu Y, Zhou J, Wang B, Wu H. Interface and anti-corrosion properties of sea-sand concrete with fumed silica. Construction and Building Materials. 2018, 1085–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.040
  20. Yu H; Meng T, Zhao Y, Liao J, Ying K. Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Studies in Construction Materials. 2022, e01286. https://doi.org/10.1016/j.cscm.2022.e01286
  21. Zhang J, Li D, Wang Y. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. Journal of Cleaner Production. 2020, 120665. https://doi.org/10.1016/j.jclepro.2020.120665
  22. Dobiszewska M, Robert W. Barnes. Properties of Mortar Made with Basalt Powder as Sand Replacement. Materials Journal. 2020, 3–9.
  23. Tchekwagep J J K, Shoude W, Mukhopadhyay A K, Shifeng H, Xin C. The Impact of Extended Heat Exposure on Rapid Sulphoaluminate Cement Concrete Up To 120°C. Periodica Polytechnica Civil Engineering. 2021;18. https://doi.org/10.3311/PPci.17122
  24. Tchekwagep J J K, Piqi Z, Shoude W, Shifeng H, Xin C. The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature. Materials Science Poland. 2021; 75–85. https://doi:10.2478/msp-2021-0006
  25. Tchekwagep J J K, Shoude W, Mukhopadhyay A K, Shifeng H, Xin C. 2020. Strengths of Sulphoaluminate Cement Concrete and Ordinary Portland cement Concrete after Exposure to High Temperatures. Ceramics-Silikáty. 2020; 227–238. https://doidoi:10.13168/cs.2020.0012
  26. Tchekwagep J J K, Shoude W, Mukhopadhyay A K, Huang S, Xin C. Compressive strength of rapid sulphoaluminate cement concrete exposed to elevated temperatures. Ceramics-Silikáty. 2020; 299–309. https://doi.org/10.13168/cs.2020.0019
  27. Swaidani A M; Baddoura M K; Aliyan S D; Choe W. Assessment of Alkali Resistance of Basalt Used as Concrete Aggregates. Journal of civil engineering. 2015, 10, https://doi:10.1515/sspjce-2015-0014
  28. Akhtar M N, Ibrahim Z, Muhamad B Ni, Jameel M, Tarannum N, Akhtar J N. Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials. 2021, 122404. https://doi.org/10.1016/j.conbuildmat.2021.122404
  29. Yi H, Oh K, Kou R, Qiao Y. Sand-filler structural material with a low content of polyethylene binder. Sustainable Materials and Technologies. 2020, e00194. https://doi.org/10.1016/j.susmat.2020.e00194
  30. Cabrera O H D, FIrassar E. High-strength concrete with different fine aggregate. Cement and Concrete Research. 2002, 1755–1761. https://doi.org/10.1016/S0008-8846(02)00860-8
  31. Singh S, Nagar R, Agrawal V. A review on Properties of Sustainable Concrete using granite dust as replacement for river sand. Journal of Cleaner Production. 2016, 74–87. https://doi.org/10.1016/j.jclepro.2016.03.114
  32. Branston J, Das S, Kenno S Y, Taylor C. Mechanical behavior of basalt fiber reinforced concrete. Construction and Building Materials, 2016, 878–886. https://doi.org/10.1016/j.conbuildmat.2016.08.009
  33. Rostásy F S, Weiβ G R, Wiedemann. Changes of pore structure of cement mortars due to temperature. Cement and Concrete Research. 1980, 10: 157–164. https://doi.org/10.1016/0008-8846(80)90072-1
  34. Jiansheng S, Xi G, Bo L, Kun D, Ruoyu J, Wei C, Yidong X. Damage Evolution of RC Beams Under Simultaneous Reinforcement Corrosion and Sustained Load. Materials (Basel). 2019, 12(14):627. doi: 10.3390/ma12040627
  35. Yufeng F, Qiang Z, Dengquan W. Comparing Permeability and Drying Shrinkage of the Concrete Containing Mineral Admixtures under the Equal Strength Grade. Minerals. 2022, 12(11), 1477; https://doi.org/10.3390/min12111477
  36. Jolanta B L, Piotr B, Jarosław B, Roman B, Elżbieta H. Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials (Basel). 2021 Jan; 14(1): 148. https://doi:10.3390/ma14010148
  37. Deqiang Y, Changwang Y, Shuguang L, Zhirong J, Chunguang W. Prediction of Concrete Compressive Strength in Saline Soil Environments. Materials (Basel). 2022; 15(13): 4663. doi: 10.3390/ma15134663
  38. Kouadjo Tchekwagep J J, Dangui C, Mukhopadhyay A K, Shoude W, Shifeng H, Xin C. Quantitative Rietveld analysis of the decomposition of hardened rapid sulphoaluminate cement after exposure to elevated temperatures. Archives of Civil and Mechanical Engineering. 2021, 119. https://doi.org/10.1007/s43452-021-00265-9
  39. Linzhu L, Magued I. Evaluation of Roundness Parameters in Use for Sand. J. Geotech. Geoenviron. Eng. 2021, 147(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002585
  40. Khan M, Abbas H. Performance of concrete subjected to elevated temperature. European Journal of Environmental and Civil Engineering. 2016, 20: 532–543. https://doi.org/10.1080/19648189.2015.1053152
  41. Maanser A, Benouis A, Ferhoune N. Effect of high temperature on strength and mass loss of admixtured concretes. Construction and Building Materials. 2018, 166:916–921. https://doi.org/10.1016/j.conbuildmat.2018.01.181
  42. Faisal A, Waleed A, Qais F. Effect of high temperature and type of cooling on some mechanical properties of cement mortar. MATEC Web of Conferences. 2018, 162. https://doi.org/10.1051/matecconf/201816202010
  43. Safaa A M, Rwayda K S A, Teba T K. Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash. Innovative Infrastructure Solutions. 2020, 20, 1. https://doi.org/10.1007/s41062-020-0274-4
DOI: https://doi.org/10.2478/msp-2022-0044 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 64 - 77
Submitted on: Nov 20, 2022
Accepted on: Feb 10, 2023
Published on: Mar 30, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Jean Jacques Kouadjo Tchekwagep, Wang Zengyao, Yang Fengzhen, Zhao Piqi, Shifeng Huang, Shoude Wang, Xin Cheng Cheng, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.