Have a personal or library account? Click to login
Microplasma spraying of hydroxyapatite coatings on additive manufacturing titanium implants with trabecular structures Cover

Microplasma spraying of hydroxyapatite coatings on additive manufacturing titanium implants with trabecular structures

Open Access
|Mar 2023

References

  1. Tilton M, Lewis GS, Manogharan GP. Additive manufacturing of orthopedic implants: progress in biology, manufacturing, and industry perspectives. In: Orthopedic biomaterials: Springer International Publishing AG; 2018. p.21–53. doi:10.1007/978-3-319-89542-0_2.
  2. Javaid M, Haleem A. Additive manufacturing applications in orthopaedics: a review. J Clin Orthop Trauma. 2018;9(3): 202–6. doi:10.1016/j.jcot.2018.04.008.
  3. Xia RZ, Zhai ZJ, Chang YY, Li HW. Clinical applications of 3-dimensional printing technology in hip joint. Orthop Surg. 2019;11(4): 533–44.
  4. Asghari Adib A, Sheikhi A, Shahhoseini M, Simeunović A, Wang S, Castro C, et al. Direct-write biofabrication and characterization of a GelMA-based biomaterial for intracorporeal additive manufacturing of tissue engineering scaffolds. Biofabrication. 2020;12(4): 045006.
  5. Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater Process Technol. 2020;6: 405–40.
  6. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47: 237–47.
  7. Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis. 2020;2: 100–16.
  8. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2: 176–94.
  9. Murr LE. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: an overview. J Mater Sci Technol. 2019;35: 231–41.
  10. Liu W, Liu S, Wang L. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Coatings. 2019;9(4): 249. doi:10.3390/coatings9040249.
  11. Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications. a literature review. Adv Drug Deliv Rev. 2017;112: 88–100. doi:10.3390/met9101039.
  12. Kalita VI, Malanin DA, Mamaev AI, Mamaeva VA, Novochadov VV, Komlev DI, et al. 3D bioactive coatings with a new type of porous ridge/cavity structure. Materialia. 2021;15: 101018. doi:10.1016/j.mtla.2021.101018.
  13. Kussaiyn-Murat A, Krasavin A, Alontseva D, Kadyroldina A, Khozhanov A, Krak Iu, et al. Development of an intelligent robotic system for plasma processing of industrial products with complex shape. In: 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS); Cracow, Poland, September 22–25, 2021. p.572–9. doi:10.1109/IDAACS53288.2021.9660960.
  14. Jung JH, Kim SY, Yi YJ, Lee BK, Kim YK. Hydroxyapatite-coated implant: clinical prognosis assessment via a retrospective Follow-Up study for the average of 3 years. J Adv Prosthodont. 2018;10: 85–92.
  15. Su Y, Cockerill I, Zheng Y, Tang L, Qin Y-X, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater. 2019;4: 196–206. doi:10.1016/j.bioactmat.2019.05.001.
  16. Cizek J, Matejicek J. Medicine meets thermal spray technology: a review of patents. J Therm Spray Tech. 2018;27(8): 1251–79.
  17. Tumilovich MV, Savich VV, Shelukhina AI. The effect of particle shape and size on the osseointegration of porous titanium powder implants. Dokl BSUIR. 2016;7(101): 115–99. In Russian.
  18. Fotovvati B, Namdari N, Dehghanghadikolaei A. On coating techniques for surface protection: a review. J Manuf Mater Process. 2019;3(1): 1–22. doi:10.3390/jmmp3010028.
  19. Łatka L, Pawłowski L, Chicot D, Pierlot C, Petit F. Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surf Coat Technol. 2010;205(4): 954–60.
  20. Blum M, Sayed M, Mahmoud EM, Killinger A, Gadow R, Naga SM. In vitro evaluation of biologically derived hydroxyapatite coatings manufactured by high velocity suspension spraying. J Therm Spray Techn. 2021;30(7): 1891–904.
  21. Abir MMM, Otsuka Y, Ohnuma K, Miyashita Y. Effects of composition of hydroxyapatite/gray titania coating fabricated by suspension plasma spraying on mechanical and antibacterial properties. J Mech Behav Biomed. 2022;125: 104888.
  22. Dey A, Nandi SK, Kundu B, Kumar C, Mukherjee P, Roy S, et al. Evaluation of hydroxyapatite and β-tri calcium phosphate microplasma spray coated pin intramedullary for bone repair in a rabbit model. Ceram Int. 2011;37(4): 1377–91.
  23. Dorozhkin SV. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C. 2015;55: 272–326. doi:10.1016/j.msec.2015.05.033.
  24. Alontseva DL, Azamatov B, Voinarovych S, Kyslytsia O, Koltunowicz T, Toxanbayeva A. Development of technologies for manufacturing medical implants using CNC machines and microplasma spraying of biocompatible coatings. Prz Elektrotech. 2020;96(4): 154–7.
  25. Alontseva DL, Abilev MB, Zhilkashinova AM, Voinarovych SG, Kyslytsia ON, Ghassemieh E, et al. Optimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants. Adv Mater Sci. 2018;18(3): 79–94.
  26. Alontseva D, Ghassemieh E, Voinarovych S, Kyslytsia O, Polovetski Y, Prokhorenkova N, et al. Manufacturing and characterisation of robot assisted microplasma multilayer coating of titanium implants: biocompatible coatings for medical implants with improved density and crystallinity. Johnson Matthey Technol Rev. 2020;64(2): 180–91. doi:10.1595/205651320×15737283268284.
  27. ISO 13779-2:2018. Implants for surgery – Hydroxyapatite – Part 2: thermally sprayed coatings of hydroxyapatite, 2018.
  28. Yushenko K, Borisov Yu, Voynarovych S, Fomakin O. Plasmatron for spraying of coatings, Pub. No.: WO/2004/010747 International Application. No.: PCT/UA2003/000014 Publication Date: 29.01.2004; International Filing Date: 25.04.2003, IPC: H05H 1/32. – 2006.
  29. ASTM International. ASTM F2024-10(2021) Standard practice for X-ray diffraction determination of phase content of plasma-sprayed hydroxyapatite coatings, 2021.
  30. Alontseva D, Ghassemieh E, Dzhes A. The application of transmission electron microscopy to the analysis of powder coatings deposited on metal substrates by plasma method. Acta Phys Pol Ser A. 2019;135(5): 1113–8. doi:10.12693/APhysPolA.135.1113.
  31. ASTM International. ASTM F1147 standard test method for tension testing of calcium phosphate and metallic coatings, 2011.
  32. ISO 21920-2:2021. Geometrical product specifications (GPS) — Surface texture: profile — Part 2: terms, definitions and surface texture parameters, 2021.
  33. ASTM International. ASTM F1185-03(2014) standard specification for composition of hydroxylapatite for surgical implants, 2014.
  34. Ohki M, Takahashi S, Jinnai R, Hoshina T. Interfacial strength of plasma-sprayed hydroxyapatite coatings. J Therm Spray Technol. 2020;29: 1119–33.
  35. Rakhadilov B, Baizhan D. Creation of bioceramic coatings on the surface of Ti–6Al–4V alloy by plasma electrolytic oxidation followed by gas detonation spraying. Coatings. 2021;11: 1433. doi:10.3390/coatings11121433.
DOI: https://doi.org/10.2478/msp-2022-0043 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 28 - 42
Submitted on: Nov 23, 2022
Accepted on: Jan 17, 2023
Published on: Mar 6, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Albina Kadyroldina, Darya Alontseva, Sergey Voinarovych, Leszek Łatka, Oleksandr Kyslytsia, Bagdat Azamatov, Aleksandr Khozhanov, Nadezhda Prokhorenkova, Almira Zhilkashinova, Svitlana Burburska, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.