References
- Omole S, Lunt A, Kirk S, Shokrani A. Advanced processing and machining of Tungsten and its alloys. J. Manuf. Mater. Process. 2022;6(1)–15. doi: 10.3390/jmmp6010015.
- Madesh S, Charles CCD, Sathishkumar D. Recent developments in conventional machining for metals and composite materials. Adv. Manuf. Tech. Eng. Eng. Mater. 2022;82–102. doi: 10.4018/978-1-7998-9574-9.ch005.
- Lajis MA, Amin AKMN, Karim ANM, Radzi HCDM, Ginta TL. Hot machining of hardened steels with coated carbide inserts. Am. J. Eng. Appl. Sci. 2009;2(2) 421–7. doi: 10.3844/ajeassp.2009.421.427.
- Karabulut S, Bilgin M, Karakoc H, Skondras Giousios D, Markopoulos AP. Study of the heat-assisted milling of Ti–6Al–4V under dry and minimum-quantity-lubrication. Arab. J. Sci. Eng. 2022; 47 9287–304. doi: 10.1007/s13369-022-06878-3.
- Kim JH, Lee CM, Kim DH. The effect of plasma-assisted machining and additive path strategies of Inconel 718 manufactured with directed energy deposition. J. Mater. Res. Technol. 2022; 19 1658–72. doi: 10.1016/j.jmrt.2022.05.108.
- Balamuruga K. Metrological changes in surface profile, chip, and temperature on end milling of M2HSS die steel. Int. J. Mach. 2020;22: 443–453.
- Rao TB. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics. Aust. J. Mech. Eng. 2020;1–15. doi: 10.1080/14484846.2020.1769458.
- Parida AK, Maity K. Study of machinability in heat-assisted machining of nickel-base alloy. Measurement. 2021;170. doi: 10.1016/j.measurement.2020.108682.
- Bharat N, Bose PSC. An overview on machinability of hard to cut materials using laser assisted machining. Mater. Today Proc. 2021;43: 665–72. doi: 10.1016/j.matpr.2020.12.587.
- Olsson M, Akujarvi V, Stahl JE, Bushlya V. Cryogenic and hybrid induction-assisted machining strategies as alternatives for conventional machining of refractory tungsten and niobium. Int. J. Refract. Hard Met. 2021;97–105. doi: 10.1016/j.ijrmhm.2021.105520.
- Parida AK, Maity K. Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM). Measurement. 2019;137: 375–81. doi: 10.1016/j.measurement.2019.01.070.
- Sofuoglu MA, Çakir FH, Gurgen S, Orak S, Ku¸shan MC. Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int. J. Adv. Manuf. Technol. 2018;95: 83–97. doi: 10.1007/s00170-017-1153-9.
- Maity K, Parida AK. Comparison of the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. Int. J. 2018;21: 364–70. doi: 10.1016/j.jestch.2018.03.018.
- Baek JT, Woo WS, Lee CM. A study on the machining characteristics of induction and laser-induction assisted machining of AISI 1045 steel and Inconel 718. J. Manuf. Process. 2018;34: 513–22. doi: 10.1016/j.jmapro.2018.06.030.
- Parida AK, Maity K. Experimental investigation on tool life and chip morphology in hot machining of Monel-400. Eng Sci Technol Int J. 2018;21: 371–9. doi: 10.1016/j.jestch.2018.04.003.
- Sanchez LE, Mello HJ, Neto RRI, Davim JP. Hot turning of a difficult-to-machine steel aided by infrared radiation. Int. J. Adv. Manuf. Technol. 2014;73: 887–98. doi: 10.1007/s00170-014-5879-3.
- Soundarrajan M, Thanigaivelan R. Electrochemical micromachining of copper alloy through hot air assisted electrolyte approach. Russ. J. Electrochem. 2021;57: 172–82. doi: 10.1134/S1023193521020117.
- Saravanan KG, Thanigaivelan R, Soundarrajan M. Comparison of electrochemical micromachining performance using TOPSIS, VIKOR and GRA for magnetic field and UV rays heated electrolyte. Bull. Pol. Acad. Sci. Tech. 2021;69. doi: 10.24425/bpasts.2021.138816.
- Soundarrajan M, Thanigaivelan R, Investigation on electrochemical micromachining (ECMM) of copper inorganic material using UV heated electrolyte. Russ. J. Appl. Chem. 2018;91: 1805–13. doi: 10.1134/S1070427218110101.
- Soundarrajan M, Thanigaivelan R. Investigation of electrochemical micromachining process using ultrasonic heated electrolyte. Adv Micro Nano Manuf Surf Eng. 2019;423–434. doi: 10.1007/978-981-32-9425-7_38.
- Gunasekaran, K., Pradeep Kumar, G., Thanigaivelan, R., Arunachalam, R., Shanmugam, V. Optimization of turning parameters of cryogenic soaked AZ91 magnesium alloy using TOPSIS coupled Taguchi technique. J. New Mater. Electrochem. 2021;24(1): 49–54. doi: 10.14447/jnmes.v24i1.a09.
- Soundarrajan M, Thanigaivelan R. Intervening variables in electrochemical micro machining for copper. International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10). Indian Institute of Technology Madras. India. 2017.
- Suresh S, Venkatesan K, Natarajan E, Rajesh S. Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy. Silicon. 2021;13: 3399–412. doi: 10.1007/s12633-020-00751-4.
- Suresh S, Venkatesan K, Rajesh S. Optimization of process parameters for friction stir spot welding of AA6061/Al2O3 by Taguchi method. AIP Conf. Proc. 2019;1–10. doi: 10.1063/1.5117961.
- Muhammad R, Maurotto A, Roy A, Silberschmidt VV. Hot ultrasonically assisted turning of β-Ti alloy. Procedia CIRP. 2010;1: 336–41.
- Ranganathan S, Senthilvelan T, Sriram G, Evaluation of machining parameters of hot turning of stainless steel (Type 316) by applying ANN and RSM. Mater. Manuf. Process. 2010;25: 1131–41. doi: 10.1080/10426914.2010.489790.
- Maity KP, Swain PK. An experimental investigation of hot-machining to predict tool life. J. Mater. Process. Technol. 2008;198: 344–49. doi: 10.1016/j.jmatprotec.2007.07.018.
- Madhavulu G, Ahmed B. Hot machining process for improved metal removal rates in turning operations. J. Mater. Process. Technol. 1994;44: 199–206. doi: 10.1016/0924-0136(94)90432-4.
- Lajis MA, Nurul Amin AKM, Karim ANM. Surface integrity in hot machining of AISI D2 hardened steel. Adv Mater Res. 2012;500: 44–50. doi: 10.4028/www.scientific.net/AMR.500.44.
- Suresh S, Elango NK, Venkatesan Lim WH, Palanikumar K, Rajesh S. Sustainable friction stir spot welding of 6061-T6 aluminium alloy using improved non-dominated sorting teaching learning algorithm. J. Mater. Res. Technol. 2020;9: 11650–74. doi: 10.1016/j.jmrt.2020.08.043.