Have a personal or library account? Click to login
Performance optimisation of the turning process along with multi-surface heating process Cover

Performance optimisation of the turning process along with multi-surface heating process

Open Access
|Mar 2023

Figures & Tables

Fig. 1

Experimental setup: (A) IR-assisted machining; (B) UV-assisted machining; and (C) HA-assisted machining.HA, hot air; IR, infrared; UV, ultraviolet
Experimental setup: (A) IR-assisted machining; (B) UV-assisted machining; and (C) HA-assisted machining.HA, hot air; IR, infrared; UV, ultraviolet

Fig. 2

SEM image of tool edges machined with (A) IR-assisted heating, (B) UV-assisted heating, (C) HA-assisted heating and (D) normal conditions.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet
SEM image of tool edges machined with (A) IR-assisted heating, (B) UV-assisted heating, (C) HA-assisted heating and (D) normal conditions.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet

Fig. 3

Effect of input parameters on different parameters
Effect of input parameters on different parameters

Fig. 4

SEM image of chip microstructure under (A) IR-assisted machining, (B) UV-assisted machining, (C) HA-assisted machining and (D) normal machining.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet
SEM image of chip microstructure under (A) IR-assisted machining, (B) UV-assisted machining, (C) HA-assisted machining and (D) normal machining.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet

Fig. 5

Effect of input parameters on surface roughness
Effect of input parameters on surface roughness

Fig. 6

SEM images of machined surface obtained under (A) IR-assisted machining, (B) UV-assisted machining, (C) HA-assisted machining and (D) normal machining.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet
SEM images of machined surface obtained under (A) IR-assisted machining, (B) UV-assisted machining, (C) HA-assisted machining and (D) normal machining.HA, hot air; IR, infrared; SEM, scanning electron microscopy; UV, ultraviolet

GRC and GRG values

Experiment no.GRC
GRCRank
y0* y_0^* yi* y_i^*
11.00000.55170.683913
20.84380.63440.685312
30.77140.50000.712710
40.96430.60000.73289
50.72970.90000.75995
60.64290.60000.661916
70.71050.63440.665015
80.67500.81360.680614
90.58700.79560.708511
100.57450.84710.75346
110.60000.91720.73388
120.62790.90000.76424
130.51920.89440.79223
140.50000.96000.73437
150.54000.92900.82301
160.56251.00000.80972

L16 orthogonal array and outcome of machining

RunABCDCutting force (N)Surface roughness (μm)
1Normal0.10.150893.18
2Normal0.1250.2100842.84
3Normal0.150.3150813.45
4Normal0.1750.4200882.97
5IR0.10.2150792.17
6IR0.1250.1200742.97
7IR0.150.450782.84
8IR0.1750.3100762.34
9UV0.10.3200702.38
10UV0.1250.4150692.27
11UV0.150.1100712.14
12UV0.1750.250732.17
13HA0.10.4100642.18
14HA0.1250.350622.07
15HA0.150.2200662.12
16HA0.1750.1150682.01

ANOVA for GRG

Machining parameterDegree of freedomSum of the squaresMean squareF-value% Contribution
A30.6187990.20630.84216.84
B30.8355930.27851.13722.73
C30.9335000.31121.27025.40
D30.9433590.31451.28325.67
Error30.3443080.11480.4689.37
Total153.67560.2450 100

Machining parameters and ranges

CodeDescriptionLevel 1Level 2Level 3Level 4
AHeating methodNormalIRUVHA
BFeed rate, mm/rev0.10.1250.150.175
CDepth of cut, mm0.10.20.30.4
DCutting speed, m/min50100150200

TOPSIS ranking

Experiment no. Vi+ V_i^+ Vi V_i^- Ji (preference) value)Rank
10.05840.03130.348916
20.04250.03370.442515
30.04850.04290.469513
40.04040.03780.483311
50.02670.05030.65286
60.03870.03540.477912
70.03810.03360.468714
80.03990.04040.503210
90.02870.04620.61668
100.02530.05310.67754
110.02890.05000.63427
120.02300.05330.69863
130.02840.05940.67665
140.03370.05360.61369
150.02580.06210.70632
160.02430.06050.71321

ANOVA for TOPSIS

Machining parameterDegree of freedomSum of the squaresMean squareF-value% Contribution
A30.0764390.02551.30826.16
B30.0487010.01620.83316.67
C30.0649540.02171.11222.23
D30.0886110.02951.51730.33
Error30.0134430.00450.2304.60
Total150.29210.0195 100
DOI: https://doi.org/10.2478/msp-2022-0041 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 1 - 13
Submitted on: Dec 14, 2022
Accepted on: Jan 8, 2023
Published on: Mar 3, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 D Sathish Kumar, R Thanigaivelan, N Natarajan, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.