Have a personal or library account? Click to login
Deformation behaviour of high-manganese steel with addition of niobium under quasi-static tensile loading Cover

Deformation behaviour of high-manganese steel with addition of niobium under quasi-static tensile loading

Open Access
|Dec 2022

References

  1. Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater Sci Technol. 1998;14(12):1213–7; https://doi.org/10.1179/mst.1998.14.12.1213
  2. Yuan GW, Huang MX. Supper strong nanostructured TWIP steels for automotive applications. Prog Nat Sci Mat Int. 2014;24(1):50–5; https://doi.org/10.1016/j.pnsc.2014.01.004
  3. Palma-Elvira ED, Garnica-Gonzalez P, Pacheco-Cedeño JS, Cruz Rivera JJ, Ramos-Azpeitia M, Garay-Reyes CG, et al. Microstructural development and mechanical properties during hot rolling and annealing of an automotive steel combining TRIP/TWIP effects. J Alloys Compd. 2019;798:45–52; https://doi.org/10.1016/j.jallcom.2019.05.130
  4. Kozłowska A, Grajcar A, Janik A, Radwański K, Krupp U, Matus K, et al. Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels. Arch Civ Mech Eng. 2021;21:3; https://doi.org/10.1007/s43452-021-00284-6
  5. Wang C, Cai W, Sun C, Li X, Qian L, Jiang J. Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. Mater Sci Eng A. 2022;835:142673; https://doi.org/10.1016/j.msea.2022.142673
  6. Grajcar A, Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng. 2008;8:29–38; https://doi.org/10.1016/S1644-9665(12)60119-8
  7. Cai W, Wang C, Sun C, Qian L, Fu MW. Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Mater Sci Eng. 2022;851:143657; https://doi.org/10.1016/j.msea.2022.143657
  8. Barati Rizi MH, Ghiasabadi Farahani M, Aghaahmadi M, Kim JH, Karjalainen LP, Sahu P. Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation. Acta Mater. 2022;240:118309; https://doi.org/10.1016/j.actamat.2022.118309
  9. Jabłońska MB, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015;60(2A):577–80; https://doi.org/10.1515/amm-2015-0176
  10. Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7; https://doi.org/10.1016/j.promfg.2018.12.049
  11. Kozłowska A, Radwański K, Matus K, Samek L, Grajcar A. Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures. Arch Civ Mech Eng. 2021;21(1): 324–38; https://doi.org/10.1007/s43452-021-00177-8
  12. Wiewiórowska S, Muskalski Z, Siemiński M. The analysis of “hot” drawing process of trip steel wires at different initial temperatures. Arch Metall Mater. 2016;61(4):1991–4; https://doi.org/10.1515/amm-2016-0321
  13. Pierce DT, Benzing JT, Jiménez JA, Hickel T, Bleskov I, Keum J, et al. The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia. 2022;22:101425; https://doi.org/10.1016/j.mtla.2022.101425
  14. Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246–59; https://doi.org/10.1016/j.jmatprotec.2016.11.023
  15. Madivala M, Bleck W. Strain rate dependent mechanical properties of TWIP steel. JOM. 2019;71(4):1291–302; https://doi.org/10.1007/s11837-018-3137-0
  16. Soares GC, Vázquez-Fernández NI, Hokka M. Thermo-mechanical behavior of steels in tension studied with synchronized full-field deformation and temperature measurements. Exp Tech. 2021;45(5):627–43; https://doi.org/10.1007/s40799-020-00436-y
  17. Mijangos D, Mejia I, Cabrera JM. Influence of microalloying additions (Nb, Ti, Ti/B, V and Mo) on the microstructure of TWIP steels. Metall Microstruct Anal. 2022;11(3):524–36; https://doi.org/10.1007/s13632-022-00871-w
  18. Hamada A, Kömi J. Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium. Mater Sci Eng A. 2018;718:301–4; https://doi.org/10.1016/j.msea.2018.01.132
  19. Bai Y, Jiao D, Li J, Yang Z. Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy. Mater Today Commun. 2022;31:103554; https://doi.org/10.1016/j.mtcomm.2022.103554
  20. Li D, Feng Y, Song S, Liu Q, Bai Q, Wu G, et al. Influences of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Mater Des. 2015;84:238–44; https://doi.org/10.1016/j.matdes.2015.06.092
  21. Chandan AK, Tripathy S, Sen B, Ghosh M, Ghosh Chowdhury S. Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy. Scr Mater. 2021;199:113891; https://doi.org/10.1016/j.scriptamat.2021.113891
  22. Lee JY, Hong JS, Kang SH, Lee YK. The effect of austenite grain size on deformation of Fe–17Mn steel. Mater Sci Eng A. 2021;809:140972; https://doi.org/10.1016/j.msea.2021.140972
  23. FLIR. FLIR T840TM QUICKLY MAKE CRITICAL DECISIONS. 2019. [Online]. Available: https://www.testequipmentdepot.com/flir/pdf/t840_datasheet.pdf. Accessed 14 Nov 2022.
  24. Wang YH, Jiang JH, Wanintrudal C, Zhou D, Smith LM, Yang LX. Whole field sheet-metal tensile test using digital image correlation. Exp Tech. 2010;34(2):54–9; https://doi.org/10.1111/j.1747-1567.2009.00483.x
DOI: https://doi.org/10.2478/msp-2022-0029 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 1 - 11
Submitted on: Oct 29, 2022
Accepted on: Nov 17, 2022
Published on: Dec 30, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Magdalena Barbara Jabłońska, Katarzyna Jasiak, Karolina Kowalczyk, Iwona Bednarczyk, Mateusz Skwarski, Marek Tkocz, Zbigniew Gronostajski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.