Have a personal or library account? Click to login
Technology for improving modern polymer composite materials Cover

Technology for improving modern polymer composite materials

Open Access
|Dec 2022

References

  1. Plank J, Schroefl C, Gruber M, Lesti M, Sieber R. Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete: The importance of PCE compatibility with silica fume. J Adv Concrete Technol. 2009;7(1):5–12; https://doi.org/10.3151/jact.7.5
  2. Sobolev K, Ferrada Gutiérrez M. How nanotechnology can change the concrete world. Prog Nanotechnol. 2014; 1:113–116; https://doi.org/10.1002/9780470588260.ch16
  3. Ghuzlan KA, Al-Khateeb GG, Qasem Y. Rheological properties of polyethylene-modified asphalt binder. Athens J Technol Eng. (2015);2(2):75–88; https://doi.org/10.30958/ajte.2-2-1
  4. Trykoz L, Kamchatnaya S, Pustovoitova O, Atynian A. Reinforcement of composite pipelines for multipurpose transportation. Transp Probl. 2018;13(1):69–79; https://doi.org/10.21307/tp.2018.13.1.7.
  5. Trykoz LV, Bagiyanc IV, Nykytynskyj AV, Atynian AO. Impact of polymer additives on concrete strength and electrical resistance. Sci Bull Construct. 2019;98(4):244–250.
  6. Merusi F, Giuliani F. Intrinsic resistance to non-reversible deformation in modified asphalt binders and its relation with specification criteria. Const Build Mater. 2011;25(8):3356–3366; https://doi.org/10.1016/j.conbuildmat.2011.03.026
  7. Morgan P, Mulder, A. The Shell bitumen industrial handbook. Surrey: Shell Bitumen; 1995.
  8. Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interf Sci. 2009;145(1–2):42–82; https://doi.org/10.1016/j.cis.2008.08.011
  9. NECEPT. Superpave System. Northeast Center for Excellence for Pavement Technology. 2001. http://www.superpave.psu.edu/superpave/system.html
  10. McNally T. Polymer modified bitumen: Properties and characterisation. Elsevier; 2011.
  11. Lu X, Isacsson U. Effect of ageing on bitumen chemistry and rheology. Const Build Mater. 2002;16(1):15–22; https://doi.org/10.1016/s0950-0618(01)00033-2
  12. Trykoz L, Kamchatnaya S, Pustovoitova O, Atynian A, Saiapin O. Effective waterproofing of railway culvert pipes. Baltic JRoad Bridge Eng. 2019;14(4):473–483; https://doi.org/10.7250/bjrbe.2019-14.453
  13. Trykoz L, Kamchatnaya S, Borodin D, Atynian A, Tkachenko R. Protection of railway infrastructure objects against electrical corrosion. Anti Corr Methods Materials. 2021;68(5):380–384; https://doi.org/10.1108/acmm-05-2021-2483
  14. Cheraghian G, Cannone Falchetto A, You Z, Chen S, Kim YS, Westerhoff J, et al. Warm mix asphalt technology: An up to date review. J Cleaner Prod. 2020;268:122–128; https://doi.org/10.1016/j.jclepro.2020.122128
  15. Atynian A, Bukhanova K, Tkachenko R, Manuilenko V, Borodin D. Energy efficient building materials with vermiculite filler. Int J Eng Res Africa. 2019;43:20–24; https://doi.org/10.4028/www.scientific.net/jera.43.20
  16. Solomentsev AB. Classification and nomenclature of modifying additives for bitumen. Sci Technol Road Industry. 2008;1:14–16.
  17. Plewa A. The effect of modifying additives on the consistency and properties of bitumen binders. Adv Mater Technol. 2016;4:35–40; https://doi.org/10.17277/amt.2016.04.pp.035-040
  18. Sun T, Sheng H. Heat transfer analysis of microwave hot recycling for asphalt pavement. J Eng. 2019;2020(1):1–5; https://doi.org/10.1049/joe.2019.1047
  19. Xu X, Gu H, Dong Q, Li J, Jiao S, Ren J. Quick heating method of asphalt pavement in hot in-place recycling. Const Build Mater. 2018;178:211–218; https://doi.org/10.1016/j.conbuildmat.2018.05.091
  20. Pan Y, Liu G, Tang D, Han D, Li X, Zhao Y. A rutting-based optimum maintenance decision strategy of hot in-place recycling in semi-rigid base asphalt pavement. J Cleaner Prod. 2021;297:126663; https://doi.org/10.1016/j.jclepro.2021.126663
  21. Golestani B, Nam BH, Moghadas Nejad F, Fallah S. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Const Build Mater. 2015;91:32–38; https://doi.org/10.1016/j.conbuildmat.2015.05.019
  22. Polacco G, Berlincioni S, Biondi D, Stastna J, Zanzotto L. Asphalt modification with different polyethylene-based polymers. Euro Polymer J. 2005;41(12):2831–2844; https://doi.org/10.1016/j.eurpolymj.2005.05.034
  23. Becker Y, Méndez MP, Rodriguez Y. Polymer modified asphalt. Vis Tecnolog. 2001;9:39–50.
  24. Remišová E, Holý M. Changes of properties of bitumen binders by additives application. IOP Conf Ser Mater Sci Eng. 2017;245:032003; https://doi.org/10.1088/1757-899x/245/3/032003
  25. Porto M, Caputo P, Loise V, Eskandarsefat S, Teltayev B, Oliviero Rossi C. Bitumen and bitumen modification: A review on latest advances. Appl Sci. 2019;9(4):742; https://doi.org/10.3390/app9040742
  26. Polacco G, Stastna J, Biondi D, Zanzotto L. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr Opin Coll Interf Sci. 2006;11(4):230–245; https://doi.org/10.1016/j.cocis.2006.09.001
  27. Rossi D, Filippi S, Merusi F, Giuliani F, Polacco G. Internal structure of bitumen/polymer/wax ternary mixtures for warm mix asphalts. J Appl Polymer Sci. 2013;129(6):3341–3354; https://doi.org/10.1002/app.39057
  28. Moghadas Nejad F, Azarhoosh A, Hamedi GH. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt – A laboratory study. Road Mater Pavement Design. 2014;15(3):746–756; https://doi.org/10.1080/14680629.2013.876443
  29. Airey G. Rheological properties of styrene butadiene styrene polymer modified road bitumens’. Fuel. 2003;82(14):1709–1719. https://doi.org/10.1016/s0016-2361(03)00146-7
  30. Yang C, Xie J, Wu S, Amirkhanian S, Zhou X, Ye Q, et al. Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Const Build Mater. 2020;235:117437; https://doi.org/10.1016/j.conbuildmat.2019.117437
  31. Wang Y, Sun L, Qin Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Const Build Mater. 2015;91:47–56; https://doi.org/10.1016/j.conbuildmat.2015.05.014
  32. Kaya D, Topal A, McNally T. Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Const Build Mater. 2019;221:345–350; https://doi.org/10.1016/j.conbuildmat.2019.06.081
  33. Kaya D, Topal A, Gupta J, McNally T. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Const Build Mater. 2020;235:117450; https://doi.org/10.1016/j.conbuildmat.2019.117450
  34. Pyshyev S, Gunka V, Grytsenko Y, Bratychak M. Polymer modified bitumen: Review. Chem Chem Technol. 2016;10(4):631–636; https://doi.org/10.23939/chcht10.04si.631
  35. Nikolaides A. Highway engineering: pavements, materials and control of quality. USA: CRC Press; 2014.
  36. Bieliatynskyi A., Yang Sh., Krayushkina K., Shao M., Ta M. Study of the possibility of using phosphorous slags in road construction. Eng Sci Technol Int J. 2022; 101262: 1–10; https://doi.org/10.1016/j.jestch.2022.101262
  37. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Study of carbon nanomodifier of fly ash in cement concrete mixtures of civil engineering. Sci Eng Comp Mater. 2022; 29(1): 227–241; https://doi.org/10.1515/secm-2022-0018
  38. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Comparative analysis of the influence of various materials on the state of the roadside environment during the road repair. Environ. Sci. Pollut. Res. 2022; https://doi.org/10.1007/s11356-022-23212-4
  39. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. The use of fiber made from fly ash from power plants in China in road and airfield construction Const Build Mater. 2022; 323; https://doi.org/10.1016/j.conbuildmat.2022.126537
  40. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Study of crushed stone-mastic asphalt concrete using fiber from fly ash of thermal power plants. Case Stud. Constr. Mater. 2022; 16; https://doi.org/10.1016/j.cscm.2022.e00877
  41. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Peculiarities of the use of the cold recycling method for the restoration of asphalt concrete pavements. Case Stud. Constr. Mater. 2022; 16; https://doi.org/10.1016/j.cscm.2022.e00872
  42. Yang Sh., Bieliatynskyi A., Pershakov V., Shao M., Ta M. Asphalt concrete based on a polymer–bitumen binder nanomodified with carbon nanotubes for road and airfield construction. J. Polym. Eng. 2022; 42(5): 458–466; https://doi.org/10.1515/polyeng-2021-0345
  43. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Features of the hot recycling method used to repair asphalt concrete pavements. Mater. Sci.-Pol. 2022; 40(2): 181–195; https://doi.org/10.2478/msp-2022-0021
  44. Bieliatynskyi A., Yang Sh., Pershakov V., Shao M., Ta M. Investigation of the properties and technologies of epoxy asphalt concrete preparation with the addition of fiber from fly ash of thermal power plants. Eur. J. Environ. Civ. 2022; https://doi.org/10.1080/19648189.2022.2110160
DOI: https://doi.org/10.2478/msp-2022-0027 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 27 - 41
Submitted on: Jun 28, 2022
Accepted on: Oct 28, 2022
Published on: Dec 31, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Shilin Yang, Andrii Bieliatynskyi, Viacheslav Trachevskyi, Meiyu Shao, Mingyang Ta, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.