Have a personal or library account? Click to login
The structure and properties of laser-cladded Inconel 625/TiC composite coatings Cover

The structure and properties of laser-cladded Inconel 625/TiC composite coatings

Open Access
|Apr 2023

References

  1. Mehta J, Mittal VK, Gupta P. Role of thermal spray coatings on wear, erosion and corrosion behavior: a review. J Appl Sci Eng. 2017;20(4):445–452. https://doi.org/10.6180/jase.2017.20.4.05
  2. Lisiecki A. Tribology and surface engineering. Coatings. 2019;9(10):663. https://doi.org/10.3390/coatings9100663
  3. Ostovan F, Hasanzadeh E, Toozandehjani M, Shafiei E, Jamaluddin KR, Amrin A. Microstructure, hardness and corrosion behavior of gas tungsten arc welding clad inconel 625 super alloy over A517 carbon steel using ERNiCrMo3 filler metal. J Mater Eng Perform. 2020;29:6919–6930. https://doi.org/10.1007/s11665-020-05178-x
  4. Jamrozik W, Górka J, Wyględacz B, Kiel-Jamrozik M. FEM-based thermogram correction for Inconel 625 joint hardness clustering. Materials. 2022;15(3):1113. https://doi.org/10.3390/ma15031113
  5. Scendo M, Staszewska-Samson K, Danielewski H. Corrosion behavior of Inconel 625 coating produced by laser cladding. Coatings. 2021;11(7):759. https://doi.org/10.3390/coatings11070759
  6. Czupryński A, Żuk M. Matrix composite coatings deposited on AISI 4715 steel by powder plasma-transferred arc welding. Materials. 2021;14(20):6066. https://doi.org/10.3390/ma14206066
  7. Lont A, Górka J, Janicki D, Matus K. The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings. 2022;12(2):227. https://doi.org/10.3390/coatings12020227
  8. Abioye TE, McCartney DG, Clare AT. Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol. 2015;217:232–40. https://doi.org/10.1016/j.jmatprotec.2014.10.024
  9. Janicki D, Musztyfaga-Staszuk M. Direct diode laser cladding of Inconel 625/WC composite coatings. J Mech Eng. 2016;62:363–72. https://doi.org/10.5545/sv-jme.2015.3194
  10. Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt Laser Technol. 2017;94:6–14. https://doi.org/10.1016/j.optlastec.2017.03.007
  11. Nurminen J, Nakki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Met Hard Mater. 2009;27:472–8. https://doi.org/10.1016/j.ijrmhm.2008.10.008
  12. Xu X, Mi G, Xiong L, Jiang P, Shao X, Wang C. Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire. J Alloys Compd. 2018;740:16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
  13. Kim SH, Shin GH, Kim BK, Kim KT, Yang DY, Aranas C, et al. Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion. Sci Rep. 2017;7:14359. https://doi.org/10.1038/s41598-017-14713-1
  14. Shivalingaiah K, Sridhar KS, Sethuram D, Shivananda Murhty KV, Koppad PG, Ramesh CS. HVOF sprayed Inconel 718/cubic boron nitride composite coatings: microstructure, microhardness and slurry erosive behaviour. Mater Res Express. 2019;6(12):1265i8. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab7067/meta
  15. Tang B, Tan Y, Zhang Z, Xu T, Sun Z, Li X. Effects of process parameters on geometrical characteristics, microstructure and tribological properties of TiB2 reinforced Inconel 718 alloy composite coatings by laser cladding. Coatings. 2020;10:76. https://doi.org/10.3390/coatings10010076
  16. Zhou S, Xu T, Hu C, Wu H, Liu H, Ma X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding. Opt Laser Technol. 2021;140:106967. https://doi.org/10.1016/j.optlastec.2021.106967
  17. Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335:334–44. https://doi.org/10.1016/j.surfcoat.2017.12.047
  18. Kotarska A, Poloczek T, Janicki D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles. Materials. 2021;14:2225. https://doi.org/10.3390/ma14092225
  19. Galevsky GV, Rudneva VV, Garbuzova AK, Valuev DV. Titanium carbide: nanotechnology, properties, application. IOP Conf Ser Mater Sci Eng. 2015;91:012017. https://doi.org/10.1088/1757-899X/91/1/012017
  20. Gopinath M, Mullick S, Nath AK. Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf Coat Technol. 2020;399:126100. https://doi.org/10.1016/j.surfcoat.2020.126100
  21. Cao S, Gu D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance. J Mater Res. 2015;30(23):3616–28. https://doi.org/10.1557/jmr.2015.358
  22. Jiang D, Hong C, Zhong M, Alkhayat M, Weisheit A, Gasser A, et al. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control. Surf Coat Technol. 2014;249:125–31. https://doi.org/10.1016/j.surfcoat.2014.03.057
  23. Lian G, Zhang H, Zhang Y, Yao M, Huang X, Chen C. Computational and experimental investigation of micro-hardness and wear resistance of Ni-based alloy and TiC composite coating obtained by laser cladding. Materials. 2019;12(5):793. https://doi.org/10.3390/ma12050793
  24. Ge T, Chen L, Gu P, Ren X, Chen X. Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding. Opt Laser Technol. 2022;150:107919. https://doi.org/10.1016/j.optastec.2022.107919
  25. Bakkar A, Ahmed MMZ, Alsaleh NA, El-Sayed Seleman MM, Ataya S. Microstructure, wear, and corrosion characterization of high TiC content Inconel 625 matrix composites. J Mater Res Technol. 2019;8(1):1102–1110. https://doi.org/10.1016/j.jmrt.2018.09.001
  26. Poloczek T, Janicki D, Górka J, Kotarska A. Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings. IOP Conf Ser Mater Sci Eng. 2021;1182:012063. https://doi.org/10.1088/1757-899X/1182/1/012063
  27. Janicki D. Shaping the structure and properties of surface layers of ductile cast iron by laser alloying. Gliwice, Poland: Wydawnictwo Politechniki Śląskiej; 2018. p. 50.
  28. Cieslak MJ, Headley TJ, Romig AD, Kollie T. A melting and solidification study of alloy 625. Metall Mater Trans A 1988;19A:2319–31. Available from: doi:10.1007/BF02645056
  29. Kotarska A. The laser alloying process of ductile cast iron surface with titanium. Metals. 2021;11(2):282. Available from doi: 10.3390/met11020282
  30. Łyczkowska K, Michalska J. Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys. Arch Metall Mater 2017;62(2):653–6. https://doi.org/10.1515/amm-2017-0100
  31. Shvets VA, Lavrenko VA, Talash VN, Panasyuk AD, Rudenko YB. Anodic polarization of titanium carbide TiCx in 3% NaCl solution in the homogeneity range. Powder Metall Met Ceram. 2016;55:113–23. https://doi.org/10.1007/s11106-016-9829-5
DOI: https://doi.org/10.2478/msp-2022-0026 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 91 - 103
Submitted on: Jul 12, 2022
Accepted on: Aug 16, 2022
Published on: Apr 10, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Aleksandra Lont, Tomasz Poloczek, Jacek Górka, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.