References
- Mehta J, Mittal VK, Gupta P. Role of thermal spray coatings on wear, erosion and corrosion behavior: a review. J Appl Sci Eng. 2017;20(4):445–452. https://doi.org/10.6180/jase.2017.20.4.05
- Lisiecki A. Tribology and surface engineering. Coatings. 2019;9(10):663. https://doi.org/10.3390/coatings9100663
- Ostovan F, Hasanzadeh E, Toozandehjani M, Shafiei E, Jamaluddin KR, Amrin A. Microstructure, hardness and corrosion behavior of gas tungsten arc welding clad inconel 625 super alloy over A517 carbon steel using ERNiCrMo3 filler metal. J Mater Eng Perform. 2020;29:6919–6930. https://doi.org/10.1007/s11665-020-05178-x
- Jamrozik W, Górka J, Wyględacz B, Kiel-Jamrozik M. FEM-based thermogram correction for Inconel 625 joint hardness clustering. Materials. 2022;15(3):1113. https://doi.org/10.3390/ma15031113
- Scendo M, Staszewska-Samson K, Danielewski H. Corrosion behavior of Inconel 625 coating produced by laser cladding. Coatings. 2021;11(7):759. https://doi.org/10.3390/coatings11070759
- Czupryński A, Żuk M. Matrix composite coatings deposited on AISI 4715 steel by powder plasma-transferred arc welding. Materials. 2021;14(20):6066. https://doi.org/10.3390/ma14206066
- Lont A, Górka J, Janicki D, Matus K. The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings. 2022;12(2):227. https://doi.org/10.3390/coatings12020227
- Abioye TE, McCartney DG, Clare AT. Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol. 2015;217:232–40. https://doi.org/10.1016/j.jmatprotec.2014.10.024
- Janicki D, Musztyfaga-Staszuk M. Direct diode laser cladding of Inconel 625/WC composite coatings. J Mech Eng. 2016;62:363–72. https://doi.org/10.5545/sv-jme.2015.3194
- Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt Laser Technol. 2017;94:6–14. https://doi.org/10.1016/j.optlastec.2017.03.007
- Nurminen J, Nakki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Met Hard Mater. 2009;27:472–8. https://doi.org/10.1016/j.ijrmhm.2008.10.008
- Xu X, Mi G, Xiong L, Jiang P, Shao X, Wang C. Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire. J Alloys Compd. 2018;740:16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
- Kim SH, Shin GH, Kim BK, Kim KT, Yang DY, Aranas C, et al. Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion. Sci Rep. 2017;7:14359. https://doi.org/10.1038/s41598-017-14713-1
- Shivalingaiah K, Sridhar KS, Sethuram D, Shivananda Murhty KV, Koppad PG, Ramesh CS. HVOF sprayed Inconel 718/cubic boron nitride composite coatings: microstructure, microhardness and slurry erosive behaviour. Mater Res Express. 2019;6(12):1265i8. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab7067/meta
- Tang B, Tan Y, Zhang Z, Xu T, Sun Z, Li X. Effects of process parameters on geometrical characteristics, microstructure and tribological properties of TiB2 reinforced Inconel 718 alloy composite coatings by laser cladding. Coatings. 2020;10:76. https://doi.org/10.3390/coatings10010076
- Zhou S, Xu T, Hu C, Wu H, Liu H, Ma X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding. Opt Laser Technol. 2021;140:106967. https://doi.org/10.1016/j.optlastec.2021.106967
- Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335:334–44. https://doi.org/10.1016/j.surfcoat.2017.12.047
- Kotarska A, Poloczek T, Janicki D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles. Materials. 2021;14:2225. https://doi.org/10.3390/ma14092225
- Galevsky GV, Rudneva VV, Garbuzova AK, Valuev DV. Titanium carbide: nanotechnology, properties, application. IOP Conf Ser Mater Sci Eng. 2015;91:012017. https://doi.org/10.1088/1757-899X/91/1/012017
- Gopinath M, Mullick S, Nath AK. Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf Coat Technol. 2020;399:126100. https://doi.org/10.1016/j.surfcoat.2020.126100
- Cao S, Gu D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance. J Mater Res. 2015;30(23):3616–28. https://doi.org/10.1557/jmr.2015.358
- Jiang D, Hong C, Zhong M, Alkhayat M, Weisheit A, Gasser A, et al. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control. Surf Coat Technol. 2014;249:125–31. https://doi.org/10.1016/j.surfcoat.2014.03.057
- Lian G, Zhang H, Zhang Y, Yao M, Huang X, Chen C. Computational and experimental investigation of micro-hardness and wear resistance of Ni-based alloy and TiC composite coating obtained by laser cladding. Materials. 2019;12(5):793. https://doi.org/10.3390/ma12050793
- Ge T, Chen L, Gu P, Ren X, Chen X. Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding. Opt Laser Technol. 2022;150:107919. https://doi.org/10.1016/j.optastec.2022.107919
- Bakkar A, Ahmed MMZ, Alsaleh NA, El-Sayed Seleman MM, Ataya S. Microstructure, wear, and corrosion characterization of high TiC content Inconel 625 matrix composites. J Mater Res Technol. 2019;8(1):1102–1110. https://doi.org/10.1016/j.jmrt.2018.09.001
- Poloczek T, Janicki D, Górka J, Kotarska A. Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings. IOP Conf Ser Mater Sci Eng. 2021;1182:012063. https://doi.org/10.1088/1757-899X/1182/1/012063
- Janicki D. Shaping the structure and properties of surface layers of ductile cast iron by laser alloying. Gliwice, Poland: Wydawnictwo Politechniki Śląskiej; 2018. p. 50.
- Cieslak MJ, Headley TJ, Romig AD, Kollie T. A melting and solidification study of alloy 625. Metall Mater Trans A 1988;19A:2319–31. Available from: doi:10.1007/BF02645056
- Kotarska A. The laser alloying process of ductile cast iron surface with titanium. Metals. 2021;11(2):282. Available from doi: 10.3390/met11020282
- Łyczkowska K, Michalska J. Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys. Arch Metall Mater 2017;62(2):653–6. https://doi.org/10.1515/amm-2017-0100
- Shvets VA, Lavrenko VA, Talash VN, Panasyuk AD, Rudenko YB. Anodic polarization of titanium carbide TiCx in 3% NaCl solution in the homogeneity range. Powder Metall Met Ceram. 2016;55:113–23. https://doi.org/10.1007/s11106-016-9829-5