Have a personal or library account? Click to login
Study of synthesis parameters on the physical properties and morphology of smart PNIPAAm hydrogels Cover

Study of synthesis parameters on the physical properties and morphology of smart PNIPAAm hydrogels

Open Access
|Sep 2022

References

  1. Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. doi:10.3390/polym13040599.
  2. Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C. 2017;70(1):842–855. doi:10.1016/j.msec.2016.09.081.
  3. Chitra, V. Diagnosis, screening and treatment of osteoporosis–a review. Biomed Pharmacol J. 2021;14(2):567–575. doi:10.13005/bpj/2159.
  4. Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Dec 4]. Lancet. 2021;396(10267):2006–2017. doi:10.1016/S0140-6736(20)32340-0.
  5. Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—a proposed definition and overview of the field. Curr Opin Biomed Eng. 2021;19(100311). doi.org/10.1016/j.cobme.2021.100311.
  6. Montoyal C, Du Y, Anthony L, Gianforcaro AL, Orrego S, Yang M, et al. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Research 2021;9(1):12. doi.org/10.1038/s41413-020-00131-z.
  7. Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem. 2015;407:4927–4948. doi:10.1007/s00216-015-8679-1.
  8. Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4):858. doi:10.3390/ma14040858.
  9. Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Euro J Pharm Biopharm. 2014;88(3):575–585. doi:10.1016/j.ejpb.2014.07.005.
  10. Sikdar P, Uddin M, Dip TM, Islam S, Hoque MS, Dhar AK, et al. Recent advances in the synthesis of smart hydrogels. Mater Adv. 2021;2:4532–4573. doi:10.1039/D1MA00193K.
  11. He W, Ma Y, Gao X, Song J. Application of Poly(N-isopropylacrylamide) as thermosensitive smart materials. J Phys: Conf Ser. 2020;1676(1):012063. doi:10.1088/1742-6596/1676/1/012063.
  12. Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng: R Rep. 2015;93:1–49. doi:10.1016/j.mser.2015.04.001.
  13. Icriverzi M, Rusen L, Sima LH, Moldovan A, Brajnicov S, Bonciu A, et al. In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix-assisted pulsed laser evaporation. Applied Surface Science. 2018;440:712–724. doi:10.1016/j.apsusc.2018.01.200.
  14. Queiroz PM. Síntese e caracterização de hidrogéis superabsorventes obtidos a partir da copolimerização de acrilamida, n-isopropilacrilamida e metacrilato de sódio. Belo Horizonte: Universidade Federal de Minas Gerais; 2010.
  15. Matzelle TR, Geuskens G, Kruse N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules. 2003;36(8):2926–2931. doi:10.1021/ma021719p.
  16. Aquada FA, Muniz EC, Vaz CMP, Mattoso LHCC. Correlation between parameters of swelling kinetic with network and hydrophilic characteristics of polyacrylamide and methylcellulose hydrogels. Química Nova, 2009;32(6):1482–1490. doi:10.1590/S0100-40422009000600023.
  17. Ribeiro CA., Martins MVS, Bressiani AH, Bressiani JC, Leyva ME, de Queiroz AAA. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Mater Sci Eng C. 2017;81:156–166. doi:10.1016/j.msec.2017.07.048.
  18. Hong TT, Okabe H, Hidaka Y, Hara K. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ Pollut. 2018;242(Pt B):1458–1466. doi:10.1016/j.envpol.2018.07.129.
  19. Ruland W. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica. 1961;14:1180–1185. doi:10.1107/S0365110X61003429.
  20. Pavia DL, Lampman GM, Kriz G, Vyvyan JA. Introduction to spectroscopy. City: Cengage learning; 2014.
  21. Wang N, Ru G, Wang L, Feng J. 1H MAS NMR studies of the phase separation of poly (N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25(10):5898–5902. doi:10.1021/la8038363.
  22. Zhang R, Lee B, Stafford CM, Douglas JF, Dobrynin AV, Bockstaller MR, Karim, A. (2017) Entropy-driven segregation of polymer-grafted nanoparticles under confinement. Proc Natl Acad Sci. 2017;114(10):2462–2467. doi:10.1073/pnas.1613828114.
  23. Lucas EF, Soares BG, Monteiro, EE. Caracterização de polímeros: determinação de peso molecular e análise térmica. Rio de Janeiro: E-papers Serviços Editoriais; 2001.
DOI: https://doi.org/10.2478/msp-2022-0020 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 196 - 205
Submitted on: Mar 14, 2022
Accepted on: May 31, 2022
Published on: Sep 13, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Luíza Braga Ferreira dos Santos, Francielly Moura de Souza Soares, Emília Santos Monteiro, Maria Elisa Rodrigues Coimbra, Carlos Nelson Elias, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.