Have a personal or library account? Click to login

The microstructures of in-situ synthesized TiC by Ti-CNTs reaction in Cu melts

Open Access
|Jul 2022

References

  1. Zhang JF, Jia T, Zhu HG, Xie ZH. Microstructure and mechanical properties of in-situ TiC reinforced FeCoNiCu2.0 high entropy alloy matrix composites. Mater Sci Eng A. 2021;822:141671. https://doi.org/10.1016/j.msea.2021.141671
  2. Radhakrishnan M, Hassan MM, Long BE, Otazu D, Lienert TJ, Anderoglu O. Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition. Addit Manuf. 2021;46:102198. https://doi.org/10.1016/j.addma.2021.102198
  3. Lu Y, Watanabe M, Miyata R, Nakamura J, Yamada J, Kato H, et al. Microstructures and mechanical properties of TiC-particulate-reinforced Ti-Mo-Al intermetallic matrix composites. Mater Sci Eng A. 2020;790:139523. https://doi.org/10.1016/j.msea.2020.139523
  4. Dudina DV, Vidyuk TM, Gavrilov AI, Ukhina AV, Bokhonov BB, Legan MA, et al. Separating the reaction and spark plasma sintering effects during the formation of TiC-Cu composites from mechanically milled Ti-C-3Cu mixtures. Ceram Int. 2021;47:12494–504. https://doi.org/10.1016/j.ceramint.2021.01.107
  5. Wang LH, Li JW, Catalano M, Bai GZ, Li N, Dai JJ, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Compos Part A Appl Sci Manuf. 2018;113:76–82. https://doi.org/10.1016/j.compositesa.2018.07.023
  6. Shen BL, Itoi T, Yamasaki T, Ogino Y. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying. Scr Mater. 2000;42:893–8. https://doi.org/10.1016/S1359-6462(00)00309-2
  7. Besterci M, Ivan J, Kovac L, Weissgaerber T, Sauer C. Strain and fracture mechanism of Cu-TiC. Mater Lett. 1999;38:270–4. https://doi.org/10.1016/S0167-577X(98)00171-2
  8. Palma RH, Sepulveda AO. Creep behavior of two Cu-2 vol% TiC alloys obtained by reaction milling and extrusion. Mater Sci Eng A. 2013;588:82–5. https://doi.org/10.1016/j.msea.2013.09.024
  9. Palma RH, Sepulveda AH, Espinoza RA, Montiglio RC. Performance of Cu-TiC alloy electrodes developed by reaction milling for electrical-resistance welding. J Mater Process Technol. 2005;169:62–6. https://doi.org/10.1016/j.jmatprotec.2005.02.260
  10. Rathod S, Modi OP, Prasad BK, Chrysanthou A, Vallauri D, Deshmukh VP, et al. Cast in situ Cu-TiC composites: Synthesis by SHS route and characterization. Mater Sci Eng A. 2009;502:91–8. https://doi.org/10.1016/j.msea.2008.10.002
  11. Wang FL, Li YP, Yamanaka K, Wakon K, Harata K, Chiba A. Influence of two-step ball-milling condition on electrical and mechanical properties of TiC-dispersion-strengthened Cu alloys. Mater Des. 2014;64:441–9. https://doi.org/10.1016/j.matdes.2014.08.027
  12. Wang FL, Li YP, Wang XY, Koizumi Y, Kenta Y, Chiba A. In-situ fabrication and characterization of ultrafine structured Cu-TiC composites with high strength and high conductivity by mechanical milling. J Alloys Compd. 2016;657:122–32. https://doi.org/10.1016/j.jallcom.2015.10.061
  13. Zhang D, Shen P, Shi LX, Jiang QC. Wetting of B 4 C, TiC and graphite substrates by molten Mg. Mater Chem Phys. 2011;130:665–71. https://doi.org/10.1016/j.matchemphys.2011.07.040
  14. Wang XL, Ding HM, Qi FG, Liu Q, Fan XL, Shi Y. Mechanism of in situ synthesis of TiC in Cu melts and its microstructures. J Alloys Compd. 2017;695:3410–18. https://doi.org/10.1016/j.jallcom.2016.12.018
  15. Liu Q, Miao WZ, Ding HM, Glandut N, Jia H, Li CY. The introduction of SiC into Cu melts based on Ti-SiC system and its transformation. J Mater Res Technol. 2020;9:2881–91. https://doi.org/10.1016/j.jmrt.2020.01.039
  16. Ding HM, Wang XL, Liu Q, Wang JF, Li CY, Zhang XC. The stability and transformation of TiC with different stoichiometries in Cu-Si melts. Mater Des. 2017;135:232–8. https://doi.org/10.1016/j.matdes.2017.09.030
  17. Isaza Merino CA, Ledezma Sillas JE, Meza JM, Herrera Ramirez JM. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J Alloys Compd. 2017;707:257–63. https://doi.org/10.1016/j.jallcom.2016.11.348
  18. Wang H, Zhang ZH, Zhang HM, Hu ZY, Li SL, Cheng XW. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Mater Sci Eng A. 2017;696:80–9. https://doi.org/10.1016/j.msea.2017.04.055
  19. Mendoza ME, Campos AP, Xing Y, Bell DC, Solórzano IG. Significant decrease of electrical resistivity by carbon nanotube networks in copper-MWCNTs nanocomposites: A detailed microstructure study. Diam Relat Mater. 2020;110:108083. https://doi.org/10.1016/j.diamond.2020.108083
  20. Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B. 2021;268:115095. https://doi.org/10.1016/j.mseb.2021.115095
  21. Ding HM, Chu WW, Liu Q, Wang HQ, Hao C, Jia HR, et al. Microstructure evolution of Cu-TiC composites with the change of Ti/C ratio. Results Phys. 2019;14:102369. https://doi.org/10.1016/j.rinp.2019.102369
  22. Liu Q, Zhang XC, Wang Q, Miao WZ, Li CY, Ding HM. Microstructure evolution of Ti5Si3 in Cu-Ti-Si alloys. China Foundry. 2020;17:286–92. https://doi.org/10.1007/s41230-020-9140-4
  23. Xu XX, Li WB, Wang Y, Dong GZ, Jing SQ, Wang Q, et al. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC. Results Phys. 2018;9:486–92. https://doi.org/10.1016/j.rinp.2018.02.059
DOI: https://doi.org/10.2478/msp-2022-0018 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 145 - 158
Submitted on: Jan 10, 2022
Accepted on: May 19, 2022
Published on: Jul 13, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Xuexia Xu, Yong Wang, Qing Wang, Guozhen Dong, Wenbin Li, Guowei Li, YaDong Lv, Jin Zhang, Haimin Ding, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.