References
- Yu Y, Zhu H. Influence of rubber size on properties of crumb rubber mortars. Materials (Basel). 2016; 9(7):527.
https://doi.org/10.3390/ma9070527 - Behbahani H, Nematollahi B. Steel fiber reinforced concrete: a review International Conference on Structural Engineering, Construction and Management, Kandy, Srilanka, 2011.
- Lawyer JS, Zampini D, Shah SP. Microfiber and macrofiber hybrid fiber-reinforced concrete. J Mater Civ Eng. 2005;17(5):595–604.
https://doi.org/10.1061/(asce)0899-1561(2005)17:5(595) - Thomas BS, Gupta RC, Panicker VJ. Recycling of waste tire rubber as aggregate in concrete: durability-related performance. J Clean Prod. 2016; 112:504–13.
https://doi.org/10.1016/j.jclepro.2015.08.046 - Baricevic A, Bjegovic D, Skazlic M. Hybrid fiber–reinforced concrete with unsorted recycled-tire steel fibers. J Mater Civ Eng. 2017; 29(6):06017005.
https://doi.org/10.1061/(asce)mt.1943-5533.0001906 - Bakar BA, Noaman AT, Akil HM. Cumulative effect of crumb rubber and steel fiber on the flexural toughness of concrete. Eng Technol Appl Sci Res. 2017; 7:1345–52.
https://doi.org/10.48084/etasr.854 - Youssf O, ElGawady MA, Mills JE. Experimental investigation of crumb rubber concrete columns under seismic loading. Eng Struct. 2015;79;
https://doi.org/10.1016/j.istruc.2015.02.005 - Abaza OA, Hussein ZS. Flexural behavior of steel fiber-reinforced rubberized concrete. J Mater Civ Eng. 2016;28(1):04015076.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001334 - Liu H, Wang X, Jiao Y, Sha T. Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials. 2016; 9(3):172.
https://doi.org/10.3390/ma9030172 - Liu R, Lui Y. Steel fiber reinforced concrete and its application performance. Int J Multidiscip Res Dev. 2016;3(6):341–3.
- Akcay B, Tasdemir MA. Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Constr Build Mater. 2012;28(1):287–93.
https://doi.org/10.1016/j.conbuildmat.2011.08.044 - Raffoul S, Garcia R, Pilakoutas K, Guadagnini M, Medina NF. Optimisation of rubberised concrete with high rubber content: an experimental investigation. Constr Build Mater. 2016;124:391–404.
https://doi.org/10.1016/j.conbuildmat.2016.07.054 - Thomas BS, Gupta RC, Panicker VJ. Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustain Cities Soc. 2015;19:68–73.
https://doi.org/10.1016/j.scs.2015.07.013 - Bakar BHA, Noaman AT, Akil HM. Cumulative effect of crumb rubber and steel fiber on the flexural toughness of concrete. Eng Technol Appl Sci Res. 2017;7(1):1345–52.
- Noaman AT, Bakar BHA, Akil HM. Experimental investigation on compression toughness of rubberized steel fibre concrete. Constr Build Mater. 2016;115:163–70.
https://doi.org/10.1016/j.conbuildmat.2016.04.022 - Nitin. Analysis and testing of waste tire fiber modified concrete. Int J Sci Res. 2017;6(2):96–101.
- Khatib ZK, Bayomy FM. Rubberized portland cement concrete. J Mater Civ Eng. 1999;11(3):206–13.
https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206) - Eldin NN, Senouci AB. Rubber-tire particles as concrete aggregate. J Mater Civ Eng. 1993;5(4):478–96.
https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478) - Topçu IB. The properties of rubberized concretes. Cem Concr Res. 1995;25(2):304–10.
https://doi.org/10.1016/0008-8846(95)00014-3 - Li G, Garrick G, Eggers J, Abadie C, Stubblefield MA, Pang SS. Waste tire fiber modified concrete. Compos Part B Eng. 2004;35(4):305–12.
https://doi.org/10.1016/j.compositesb.2004.01.002 - Bijarimi M, Zulkafli H, Beg MD. Mechanical properties of industrial tyre rubber compounds. J Appl Sci. 2010;10:1345–8.
https://doi.org/10.3923/jas.2010.1345.1348 - ACI Committee 211. Recommended practice for selecting proportions for normal and heavyweight concrete. Detroit: The Institute; 1977., 1991.
- ASTM Committee 143. Standard test method for slump of hydraulic-cement concrete. West Conshohocken, PA: ASTM International; 2015.
- ASTM Committee 39. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International; 2021.
- ACI Committee 496. Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International; 2017.
- ACI Committee 1609. Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, PA: ASTM International; 2019.
- ACI Committee 1018. Standard test method for flexural toughness and first crack strength of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, PA: ASTM International; 1997.
- Yazıcı S, İnan G, Tabak V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr Build Mater. 2007;21(6):1250–3.
https://doi.org/10.1016/j.conbuildmat.2006.05.025 - Iqbal S, Ali I, Room S, Khan SA, Ali A. Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Mater Struct. 2019;52(3):56.
https://doi.org/10.1617/s11527-019-1357-6 - Topçu IB, Canbaz M. Effect of different fibers on the mechanical properties of concrete containing fly ash. Constr Build Mater. 2007;21(7):1486–91.
https://doi.org/10.1016/j.conbuildmat.2006.06.026 - Noaman AT, Bakar BHA, Akil HM, Alani AH. Fracture characteristics of plain and steel fibre reinforced rubberized concrete. Constr Build. Mater. 2017;152:414–23.
https://doi.org/10.1016/j.conbuildmat.2017.06.127 - Fu C, Ye H, Wang K, Zhu K, He C. Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC). Compos Part B Eng. 2019;160:158–66.
https://doi.org/10.1016/j.compositesb.2018.10.045 - Ramakrishnan V, Wu GY, Hosalli G. Flexural behavior and toughness of fiber reinforced concretes. Transp Res Rec. 1989;1226:69–77.