References
- Alfayez S, Ali MAEM, Nehdi ML. Eco-efficient fiber-reinforced preplaced recycled aggregate concrete under impact loading, Infrastructures. 2019;4. https://doi.org/10.3390/infrastructures4020037.
- Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects, Nucl Eng Des. 1976;37:183–203. https://doi.org/10.1016/0029-5493(76)90015-7.
- Das Adhikary S, Li B, Fujikake K, Alhadid MMA, Soliman AM, Nehdi ML, et al. Critical overview of blast resistance of different concrete types. Mag Concr Res. 2014;66:72–81. https://doi.org/10.1680/macr.13.00096.
- Yoo D-Y, Banthia N. Impact resistance of fiber-reinforced concrete – A review. Cem Concr Compos. 2019;104:103389. https://doi.org/10.1016/j.cemconcomp.2019.103389.
- Vadivel TS, Thenmozhi R, Doddurani M. Experimental behaviour of waste tyre rubber aggregate concrete under impact loading. Iran J Sci Technol Trans Civ Eng. 2014;38:251–9.
- Alwesabi EAH, Bakar BHA, Alshaikh IMH, Zeyad AM, Altheeb A, Alghamdi H. Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber. Structures. 2021;33:4421–32. https://doi.org/10.1016/j.istruc.2021.07.011.
- Ismail ZZ, AL-Hashmi EA. Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 2008;28:2041–7. https://doi.org/10.1016/j.wasman.2007.08.023.
- Makul N, Fediuk R, Amran M, Zeyad AM, de Azevedo ARG, Klyuev S, et al. Capacity to develop recycled aggregate concrete in South East Asia. Buildings. 2021;11:234. https://doi.org/10.3390/buildings11060234.
- Makul N, Fediuk R, Amran M, Zeyad AM, Murali G, Vatin N, et al. Vasilev, use of recycled concrete aggregates in production of green cement-based concrete composites: A review. Crystals. 2021;11:232. https://doi.org/10.3390/cryst11030232.
- Marcilla A, Gómez A, Menargues S. TG/FTIR study of the thermal pyrolysis of EVA copolymers. J Anal Appl Pyrolysis. 2005;74:224–30. https://doi.org/10.1016/J.JAAP.2004.09.009.
- Uçar S, Ozkan AR, Yanik J, Karagöz S. The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene. Fuel Process Technol. 2008;89:1201–6. https://doi.org/10.1016/J.FUPROC.2008.05.010.
- Lopes D, Ferreira MJ, Russo R, Dias JM. Natural and synthetic rubber/waste – Ethylene-vinyl acetate composites for sustainable application in the footwear industry. J Clean Prod. 2015;92:230–6. https://doi.org/10.1016/j.jclepro.2014.12.063.
- Rimez B, Rahier H, Van Assche G, Artoos T, Biesemans M, Van Mele B. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polym Degrad Stab. 2008;93:800–10. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2008.01.010.
- Lima PRL, Leite MB, Santiago EQR. Recycled lightweight concrete made from footwear industry waste and CDW. Waste Manag. 2010;30:1107–13. https://doi.org/10.1016/J.WASMAN.2010.02.007.
- Zuchetto L, Oliveira MF, Tutikian B. Dynamic stiffness evaluation of floor covering system made out of recycled EVA – Ethylene vinyl acetate. In: INTER-NOISE 2015, 44th International Congress and Exposition on Noise Control Engineering. San francisko, California; 2015.
- Magbool HM, Zeyad AM. The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete. Constr Build Mater. 2021;312:125444. https://doi.org/10.1016/j.conbuildmat.2021.125444.
- Balcikanli Bankir M, Sevim UK. Performance optimization of hybrid fiber concrete according to mechanical properties. Constr Build Mater. 2020;261:119952. https://doi.org/10.1016/J.CONBUILDMAT.2020.119952.
- Anil Ö, Kantar E, Yilmaz MC. Low velocity impact behavior of RC slabs with different support types. Constr Build Mater. 2015;93:1078–88. https://doi.org/10.1016/J.CONBUILDMAT.2015.05.039.
- Mubin SM, Syamsir A, Mohamad D. A review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact. In: 2nd International Conference on Disaster Management. IOP Publishing; 2021. https://doi.org/10.1088/1755-1315/708/1/012075.
- Strong AB. Fundamentals of composites manufacturing – materials, methods, and applications, 2nd, Society of Manufacturing Engineers (SME); 2008.
- Chawla KK. Composite materials, 4th, Springer Nature Switzerland; 2019. https://doi.org/10.1007/978-3-030-28983-6.
- Balasubramanian M. Composite materials and processing. 1st ed. CRC Press; 2013.
- TS EN 998-2, Specification for mortar for masonry - Part 2: Masonry Mortar, Ankara; 2017.
- ASTM C349-02. Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). West Conshohocken, PA, www.astm.org; 2002. https://doi.org/10.1520/C0349-02.
- Yang X, Liu J, Li H, Ren Q. Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder. Constr Build Mater. 2020;235:117532. https://doi.org/10.1016/J.CONBUILDMAT.2019.117532.
- Dong Z, Wu G,. Zhao XL, Zhu H, Wei Y, Yan Z. Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns. Constr Build Mater. 2020;244:118330. https://doi.org/10.1016/J.CONBUILDMAT.2020.118330.
- Huang L, Sun X, Yan L, Kasal B. Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement. Constr Build Mater. 2017;131:438–448. https://doi.org/10.1016/J.CONBUILDMAT.2016.11.095.
- Cheng S, Feng P, Li Z, Du J. Mechanical behavior of cylindrical GFRP chimney liners subjected to axial tension. Compos Part B Eng. 2019;177:107411. https://doi.org/10.1016/J.COMPOSITESB.2019.107411.
- Alhassan EA, Olasehinde DA, Musonda A, Odeniyi OM. Tensile and flexural behaviour of steel materials used in the construction of crop processing machines. In: IOP Conference Sereies Earth and Environmental Science. IOP Publishing, Kwara State; 2020. https://doi.org/doi:10.1088/1755-1315/445/1/012044.
- Wang W, Chouw N. Experimental and theoretical studies of flax FRP strengthened coconut fibre reinforced concrete slabs under impact loadings. Constr Build Mater. 2018;171:546–557. https://doi.org/10.1016/j.conbuildmat.2018.03.149.
- Szuladzinski G. Formulas for mechanical and structural shock and impact. CRC Press/Taylor & Francis Group; 2010.
- Szuladzinski G. Mass-plate impact parameters for the elastic range. Acta Mech. 2008;200:111–125. https://doi.org/10.1007/s00707-008-0578-5.
- Swamy RN. The elastic properties of structural lightweight concrete. Proc Inst Civ Eng. 1975;2:381–394.
- A.C. 318. Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95); 1995.
- Jin-Keun K, Hoon K, Jae-Ho N. Estimation of mechanical properties of concrete in early age by resonance frequency test. Mag Korea Concr Inst. 1995;7:164–171. https://doi.org/10.22636/MKCI.1995.7.5.164.