References
- Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.
https://doi.org/10.1016/S0079-6425(99)00010-9 . - Koch CC. Intermetallic matrix composites prepared by mechanical alloying – a review. Mater Sci Eng A. 1998;A244:39–48.
https://doi.org/10.1016/S0921-5093(97)00824-1 . - Bhadeshia HH. Mechanically alloyed metals. J Mater Sci Technol. 2000;1:1404–11.
https://doi.org/10.1179/026708300101507361 . - Koch CC, Whittenberger JD. Review: mechanical milling/alloying of Intermetallic. Intermetallics. 1996;4:339–55.
https://doi.org/10.1016/0966-9795(96)00001-5 . - Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, et al. Alloying of immiscible Ge with Al by ball milling. Mater Lett. 2003;57:3681–5.
https://doi.org/10.1016/S0167-577X(03)00149-6 . - Ma E, Atzmon M. Phase transformations induced by mechanical alloying in a binary system. Mater Chem Phys. 1995;39:249–67.
https://doi.org/10.1016/0254-0584(94)01446-N . - Romankov S, Sha W, Kaloshkin SD, Kaevitser K. Formation of Ti-Al coatings by mechancial alloying method. Surf Coat Technol. 2006;201:3235–45.
https://doi.org/10.1016/j.surfcoat.2006.06.044 . - Bajakke PA, Malik VR, Saxena KK, Deshpande AS. A novel ultrahigh conductive Al-Cu composite produced via microwave sintering and post- treated by friction stir process. Adv Mater Process Technol. 2021;
https://doi.org/10.1080/2374068X.2021.1945270 . - El-Eskandarani MS. Mechanical alloying for fabrication of advanced engineering materials. New York, U.S.A: Noyes Publications, William Andrew Publishing; 2001. pp. 22–60.
- Gaffet E. Ball milling: an E-v-T parameter phase diagram. Mater Sci Eng A. 1991;135:291–3.
https://doi.org/10.1016/0921-5093(91)90578-B . - Suryanarayana C, Chen GH, Froes FS. Milling maps for phase identification during mechanical alloying. Scripta Metall Mater. 1992;26:1727–32.
https://doi.org/10.1016/0956-716X(92)90542-M . - Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Synthesis, microstructures and mechanical behaviour of Cr0.21Fe0.20Al0.41Cu0.18 and Cr0.14Fe0.13Al0.26Cu0.11Si0.25Zn0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing. Met Mater Int. 2021;27:139–55.
https://doi.org/10.1007/s12540-020-00660-6 . - Clinktan R, Senthil V, Ramkumar KR, Sivasankaran S, Al-Mufadi FA. Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram Int. 2019;45:3492–501.
https://doi.org/10.1016/j.ceramint.2018.11.007 . - Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018;7:93–110.
https://doi.org/10.1007/s40204-018-0091-4 . - Mandal S, Ummadi R, Bose M, Balla VK, Roy M. Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Mater Lett. 2019;237:323–7.
https://doi.org/10.1016/j.matlet.2018.11.117 . - Ma Z, Gao M, Na D, Li Y, Tan L, Yang K. Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material. Mater Sci Eng C. 2019;103:109718.
https://doi.org/10.1016/j.msec.2019.05.003 . - Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–62.
https://doi.org/10.1016/j.biomaterials.2006.05.029 . - Ali S, Rani AM, Baig Z, Ahmed SW, Hussain G, Subramaniam K, et al. Biocompatibility and corrosion resistance of metallic biomaterials. Corros Rev. 2020;38:381–402.
https://doi.org/10.1515/corrrev-2020-0001 . - Vojtěch D, Kubasek J, Capek J, Michalcova A, Pospíšilová I. Corrosion and mechanical behavior of biodegradable metallic biomaterials. Solid State Phenom. 2015;227:431–34.
https://doi.org/10.4028/www.scientific.net/SSP.227.431 . - Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53.
https://doi.org/10.1016/j.actbio.2014.04.007 . - Lin W, Qin L, Qi H, Zhang D, Zhang G, Gao R, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017;54:454–68.
https://doi.org/10.1016/j.actbio.2017.03.020 . - Drynda A, Hassel T, Bach FW, Peuster M. In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B. 2015;103:649–60.
https://doi.org/10.1002/jbm.b.33234 . - Dehestani M, Adolfsson E, Stanciu LA. Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Mater Des. 2016;109:556–69.
https://doi.org/10.1016/j.matdes.2016.07.092 . - Schinhammer M, Steiger P, Moszner F, Löffler JF, Uggowitzer PJ. Degradation performance of biodegradable FeMnC (Pd) alloys. Mater Sci Eng C. 2013;33:1882–93.
https://doi.org/10.1016/j.msec.2012.10.013 . - Hufenbach J, Wendrock H, Kochta F, Kühn U, Gebert A. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties. Mater Lett. 2017;186:330–3.
https://doi.org/10.1016/J.MATLET.2016.10.037 . - Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65:540–3.
https://doi.org/10.1016/j.matlet.2010.10.068 . - Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res Part A. 2010;93:1–11.
https://doi.org/10.1002/jbm.a.32224 . - Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–20.
https://doi.org/10.1016/j.actbio.2010.11.001 . - Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-Barough S, Hermawan H. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater Sci Eng C. 2018;88:88–94.
https://doi.org/10.1016/j.msec.2018.03.005 . - Safaie N, Khakbiz M, Sheibani S, Bagha PS. Synthesizing of nanostructured Fe-Mn alloys by mechanical alloying process. Procedia Mater Sci. 2015;11:381–5.
https://doi.org/10.1016/j.mspro.2015.11.134 . - Bagha PS, Khakbiz M, Safaie N, Sheibani S, Ebrahimi-Barough S. Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.% Mn alloy. J Alloys Compd. 2018;768:166–75.
https://doi.org/10.1016/j.jallcom.2018.07.261 . - Sivasankaran S, Sivaprasad K, Narayanasamy R, Iyer VK. An investigation on flowability and compressibility of AA 6061100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 2010;201:70–82.
https://doi.org/10.1016/j.powtec.2010.03.013 . - Sánchez F, Bolarín AM, Molera P, Mendoza JE, Ocampo M. Relationship between particle size and manufacturing processing and sintered characteristics of iron powders. Rev Latinoam Metal Mater. 2003;23:35–40.
- Ammar HR, Sivasankaran S, Alaboodi AS. Investigation of the microstructure and compressibility of biodegradable Fe–Mn–Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying. Materials. 2021;14:1–23.
https://doi.org/10.3390/ma14113088 . - Ammar HR, Sivasankaran S, Alaboodi AS, Al-Mufadi FA. Synthesis, microstructural investigation and compaction behavior of Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high entropy alloy. Adv Powder Technol. 2021;32:398–412.
https://doi.org/10.1016/j.apt.2020.12.016 . - Ming QY, He LY. Powder-suspension dielectric fluid for EDM. J Mater Process Technol. 1995;52:44–54.
https://doi.org/10.1016/0924-0136(94)01442-4 . - Montgomery DC. Design and analysis of experiments. 4th ed. New York, USA: Wiley; 1997. pp. 65–138.
- Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana PV. X-ray peak broadening analysis of AA 6061100−x- x wt.% Al2O3 nanocomposite prepared by mechanical alloying. Mater Charact. 2011;62:661–72.
https://doi.org/10.1016/j.matchar.2011.04.017 . - Sivasankaran S. Optimization on dry sliding wear behavior of yellow brass using face centered composite design. AIMS Mater Sci. 2019;6:80–96.
https://doi.org/10.3934/matersci.2019.1.80 . - Sivasankaran S, Ramkumar KR, Al-Mufadi FA, Irfan OM. Effect of TiB2/Gr hybrid reinforcements in Al 7075 matrix on sliding wear behavior analyzed by response surface methodology. Met Mater Int. 2021;27:1739–55.
https://doi.org/10.1007/s12540-019-00543-5 .