Have a personal or library account? Click to login
Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications Cover

Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications

Open Access
|Dec 2021

References

  1. Vekas L. Magnetic nanofluids properties and some applications. Rom J Phys. 2004;49(9–10):707–21.
  2. Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote control of cellular functions: The role of smart nanomaterials in the medicine of the future. Adv Healthc Mater. 2017;6(9):1700002. https://doi.org/10.1002/adhm.201700002
  3. Abdi H, Motlagh SY, Soltanipour H. Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime. Results Phys. 2020;18:103224. https://doi.org/10.1016/j.rinp.2020.103224
  4. Szalai I, Dietrich S. Phase transitions and ordering of confined dipolar fluids. Eur Phys J E. 2009;28(3):347–59. https://doi.org/10.1140/epje/i2008-10424-2
  5. Liang YJ, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select. 2020;2(2):216–50. https://doi.org/10.1002/nano.202000169
  6. Walter A, Garofalo A, Parat A, Martinez H, Felder-Flesch D, Begin-Colin S. Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnol Rev. 2015;4(6):581–93. https://doi.org/10.1515/ntrev-2015-0014
  7. Das GK, Stark DT, Kennedy IM. Potential toxi-city of Up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir. 2014;30(27):8167–76. https://doi.org/10.1021/la501595f
  8. De Sousa ME, Van Raap MBF, Rivas PC, Zélis PM, Girardin P, Pasquevich GA, et al. Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C. 2013;117(10):5436–45. https://doi.org/10.1021/jp311556b
  9. Lai CW, Low FW, Tai MF, Hamid SBA. Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol. 2018;37(6):1712–21. https://doi.org/10.1002/adv.21829
  10. Rahme K, Dagher N. Chemistry routes for copolymer synthesis containing peg for targeting, imaging, and drug delivery purposes. Pharmaceutics. 2019;11(7):327. https://doi.org/10.3390/pharmaceutics11070327
  11. Zhang X, Guo Z, Zhang X, Gong L, Dong X, Fu Y, et al. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci Rep. 2019;9(1):5212. https://doi.org/10.1038/s41598-019-41482-w
  12. Zhang X, Tian G, Yin W, Wang L, Zheng X, Yan L, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy. Adv Funct Mater. 2015;25(20):3049–3056. https://doi.org/10.1002/adfm.201404402
  13. Xiong F, Li J, Wang H, Chen Y, Cheng J, Zhu J. Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal. Polymer (Guildf). 2006;47(19):6636–41. https://doi.org/10.1016/j.polymer.2006.07.020
  14. Magro M, Vianello F. Bare iron oxide nanoparticles: Surface tunability for biomedical, sensing and environmental applications. Nanomaterials. 2019;9(11):1608. https://doi.org/10.3390/nano9111608
  15. Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9. https://doi.org/10.1021/acsomega.8b03348
  16. Oriekhova O, Stoll S. Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge. Colloids Surfaces A. 2014;461:212–9. https://doi.org/10.1016/j.colsurfa.2014.07.049
  17. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6):2064–2110. https://doi.org/10.1021/cr068445e
  18. Yang XC, Shang YL, Li YH, Zhai J, Foster NR, Li YX, et al. Synthesis of monodisperse iron oxide nanoparticles without surfactants. J Nanomater. 2014;1–5. https://doi.org/10.1155/2014/740856
  19. Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, et al. MRI contrast agents: From molecules to particles. Springer: Singapore; 2017.
  20. Tombácz E, Majzik A, Horvát ZS, Illés E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6.
  21. Sun ZX, Su FW, Forsling W, Samskog PO. Surface characteristics of magnetite in aqueous suspension. J Colloid Interface Sci. 1998;197(1):151–9. https://doi.org/10.1006/jcis.1997.5239
  22. Shete PB, Patil RM, Tiwale BM, Pawar SH. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015;377:406–10. https://doi.org/10.1016/j.jmmm.2014.10.137
  23. Jadhav NV., Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surfaces B. 2013;108:158–68. https://doi.org/10.1016/j.colsurfb.2013.02.035
  24. Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater. 2006;306(2):248–53. https://doi.org/10.1016/j.jmmm.2006.03.049
  25. Mikelashvili V, Kekutia S, Markhulia J, Saneblidze L, Jabua Z, Almásy L, et al. Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges. J Serbian Chem Soc. 2021;86(2):181–94. https://doi.org/10.2298/JSC200414053M
  26. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36(5):1277–82. https://doi.org/10.1107/S0021889803012779
  27. Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017;50(5):1545–53. https://doi.org/10.1107/S1600576717011438
  28. Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76(6):2879–86. https://doi.org/10.1016/S0006-3495(99)77443-6
  29. Bressler I, Pauw BR, Thünemann AF. McSAS: Software for the retrieval of model parameter distributions from scattering patterns. J Appl Crystallogr. 2015;48(3):962–9. https://doi.org/10.1107/S1600576715007347
  30. Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol Biol. 2017;1570:47–1. https://doi.org/10.1007/978-1-4939-6840-4_4
  31. Almásy L, Creanga D, Nadejde C, Rosta L, Pomjakushina E, Ursache-Oprisan M. Wet milling versus co-precipitation in magnetite ferrofluid preparation. J Serbian Chem Soc. 2015;80(3):367–76. https://doi.org/10.2298/JSC140313053A
  32. Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci. 2005;281(2):432–6. https://doi.org/10.1016/J.JCIS.2004.08.121
  33. Pacakova B, Kubickova S, Reznickova A, Niznansky D, Vejpravova J. Spinel ferrite nanoparticles: Correlation of structure and magnetism. Magn Spinels - Synth Prop Appl. 2017:3–30. https://doi.org/10.5772/66074
  34. Sathish S, Balakumar S. Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Mater Chem Phys. 2016;173:364–71. https://doi.org/10.1016/j.matchemphys.2016.02.024
  35. Iyengar SJ, Joy M, Ghosh CK, Dey S, Kotnala RK, Ghosh S. Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route. RSC Adv. 2014;4(110):64919–29. https://doi.org/10.1039/c4ra11283k
  36. Premaratne WA, Priyadarshana WM, Gunawardena SH, De Alwis AA. Synthesis of nanosilica from paddy husk ash and their surface functionalization. J Sci Univ Kelaniya Sri Lanka. 2014;8:33–8. https://doi.org/10.4038/josuk.v8i0.7238
  37. Kumar TV, Prabhakar S, Raju GB. Adsorption of oleic acid at sillimanite/water interface. J Colloid Interface Sci. 2002;247(2):275–81. https://doi.org/10.1006/jcis.2001.8131
  38. Lu C, Bhatt LR, Jun HY, Park SH, Chai KY. Carboxylpolyethylene glycol-phosphoric acid: A ligand for highly stabilized iron oxide nanoparticles. J Mater Chem. 2012;22(37):19806–11. https://doi.org/10.1039/c2jm34327d
DOI: https://doi.org/10.2478/msp-2021-0028 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 331 - 345
Submitted on: Aug 16, 2021
Accepted on: Oct 19, 2021
Published on: Dec 13, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jano Markhulia, Shalva Kekutia, Vladimer Mikelashvili, László Almásy, Liana Saneblidze, Tamar Tsertsvadze, Nino Maisuradze, Nino Leladze, Manfred Kriechbaum, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.