Have a personal or library account? Click to login
Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications Cover

Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications

Open Access
|Dec 2021

Figures & Tables

Fig. 1

The Zeta-potential and size distribution of particle agglomerates in the synthesized samples. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superpara-magnetic iron oxide nanoparticles.
The Zeta-potential and size distribution of particle agglomerates in the synthesized samples. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superpara-magnetic iron oxide nanoparticles.

Fig. 2

Schematic representation of charges on the surface of magnetite nanoparticles as a function of pH. ZPC, zero-point charge.
Schematic representation of charges on the surface of magnetite nanoparticles as a function of pH. ZPC, zero-point charge.

Fig. 3

Schematic depiction of the stabilization of Fe3O4 nanoparticles in water. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPION, superparamagnetic iron oxide nanoparticles.
Schematic depiction of the stabilization of Fe3O4 nanoparticles in water. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPION, superparamagnetic iron oxide nanoparticles.

Fig. 4

Diffractograms of synthesized specimens taken with Fe Kα anode (λ = 1.937283 Å) (a), the same diffractograms converted to Cu Kα radiation (λ = 1.54178 Å) (b). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Diffractograms of synthesized specimens taken with Fe Kα anode (λ = 1.937283 Å) (a), the same diffractograms converted to Cu Kα radiation (λ = 1.54178 Å) (b). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 5

Guinier plots for evaluating radius of gyration Rg for the colloid dispersions (the fitting of the reference model (red line) to experimental SAXS data (grey, blue, green). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Guinier plots for evaluating radius of gyration Rg for the colloid dispersions (the fitting of the reference model (red line) to experimental SAXS data (grey, blue, green). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 6

McSAS fitting for evaluating size distribution and pair-distance distribution function p(r) obtained by GNOM. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
McSAS fitting for evaluating size distribution and pair-distance distribution function p(r) obtained by GNOM. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 7

Particle size distributions obtained using McSAS. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Particle size distributions obtained using McSAS. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 8

Ab initio SAXS models of bare, OA-SPIONs, PEGMO460-OA-SPIONs, and PEGMO860-OA-SPIONs nanoparticles constructed using DAMMIN. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SAXS, small-angle X-ray scattering; SPIONs, superparamagnetic iron oxide nanoparticles.
Ab initio SAXS models of bare, OA-SPIONs, PEGMO460-OA-SPIONs, and PEGMO860-OA-SPIONs nanoparticles constructed using DAMMIN. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SAXS, small-angle X-ray scattering; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 9

Magnetization curves of synthesized samples at a temperature of 300 K. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Magnetization curves of synthesized samples at a temperature of 300 K. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 10

FTIR spectra of pure OA, PEGMO460, and PEGMO860 in liquid form (left); FTIR spectra of BIONs, PEG460-OA-SPIONs, and PEG860-OA-SPIONs samples (right). BIONs, bare iron oxide nanoparticles; FTIR, fourier-transform infrared spectroscopy; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
FTIR spectra of pure OA, PEGMO460, and PEGMO860 in liquid form (left); FTIR spectra of BIONs, PEG460-OA-SPIONs, and PEG860-OA-SPIONs samples (right). BIONs, bare iron oxide nanoparticles; FTIR, fourier-transform infrared spectroscopy; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Nanoparticles average size obtained by SAXS measurement_

SampleAverage radius of nanoparticles obtained by SAXS (nm)
BIONs14.6
OA–SPIONs15.8
PEGMO460–OA–SPIONs14.0
PEGMO860–OA–SPIONs15.5

Saturation magnetization of the samples_

SamplesSaturation magnetization Ms (emu/g)
BIONs (Fe3O4)64.6 (Ha = 1.07 T)
OA-SPIONs51.1 (Ha = 1.07 T)
PEGMO460-OA-SPIONs39.0 (Ha = 1.00 T)
PEGMO860-OA-SPIONs48.9 (Ha = 1.07 T)

ELS and DLS Experimental results of samples_

SamplesMeasurement temperature °CMean value of potential (mV)Hydrodynamic diameter (nm)Polydispersity index (%)
BIONs2021.722520.6
OA-SPIONs20−24.218222.0
PEGMO860-OA-SPIONs20−23.310119.5
PEGMO460-OA-SPIONs20−34.511023.2

Average crystallite size of the samples calculated by Scherrer formula_

SampleAverage size of crystallite estimated by XRD (Fe Kα; λ = 1.937Å) (nm)Crystalline lattice parameter (Å)
BIONs20.08.3755
OA–SPIONs21.88.3755
PEGMO460–OA–SPIONs21.08.3725
PEGMO860–OA–SPIONs23.18.3725
DOI: https://doi.org/10.2478/msp-2021-0028 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 331 - 345
Submitted on: Aug 16, 2021
Accepted on: Oct 19, 2021
Published on: Dec 13, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jano Markhulia, Shalva Kekutia, Vladimer Mikelashvili, László Almásy, Liana Saneblidze, Tamar Tsertsvadze, Nino Maisuradze, Nino Leladze, Manfred Kriechbaum, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.