Have a personal or library account? Click to login
Spinel zinc ferrite nanostructured thin-films for enhanced light-harvesting in polycrystalline solar cells Cover

Spinel zinc ferrite nanostructured thin-films for enhanced light-harvesting in polycrystalline solar cells

Open Access
|Jun 2021

References

  1. Devabhaktuni V, Alam M, Depuru SS, Green RC 2nd, Nims D, Near C. Solar energy: trends and enabling technologies. Renew Sustain Energy Rev. 2013;19:555–64. https://doi.org/10.1016/j.rser.2012.11.024
  2. Shi E, Li H, Yang L, Zhang L, Li Z, Li P, et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013 Apr;13(4):1776–81. https://doi.org/10.1021/nl400353fPMID:23517083
  3. Saylan S, Milakovich T, Hadi SA, Nayfeh A, Fitzgerald EA, Dahlem MS. Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells. Sol Energy. 2015;122:76–86. https://doi.org/10.1016/j.solener.2015.07.049
  4. Zhang W, Xu Y, Wang H, Xu C, Yang S. Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells. Sol Energy Mater Sol Cells. 2011;95(10):2880–5. https://doi.org/10.1016/j.solmat.2011.06.005
  5. Kmita A, Pribulova A, Holtzer M, Futas P, Roczniak A. Use of Specific Properties of Zinc Ferrite in Innovative Technologies. Arch Metall Mater. 2016;61(4):2141–6. https://doi.org/10.1515/amm-2016-0289
  6. Atif M, Hasanain S, Nadeem M. Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun. 2006;138(8):416–21. https://doi.org/10.1016/j.ssc.2006.03.023
  7. Kant Sharma R, Ghose R. Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram Int. 2015;41:14684. https://doi.org/10.1016/j.ceramint.2015.07.191
  8. Huang X, Zhang J, Rao W, Sang T, Song B, Wong C. Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J Alloys Compd. 2016;662:409–14. https://doi.org/10.1016/j.jallcom.2015.12.076
  9. Zhu H, Gu X, Zuo D, Wang Z, Wang N, Yao K. Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology. 2008 Oct;19(40):405503. https://doi.org/10.1088/0957-4484/19/40/405503 PMID:21832619
  10. Mandal S, Natarajan S, Tamilselvi A, Mayadevi S. Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: A magnetically recyclable catalyst for water/wastewater treatment. J Environ Chem Eng. 2016;4(3):2706–12. https://doi.org/10.1016/j.jece.2016.05.020
  11. Chaudhary R, Roy K, Kanwar RK, Walder K, Kanwar JR. Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. J Nanobiotechnology. 2016 Jan;14(1):6. https://doi.org/10.1186/s12951-016-0157-1 PMID:26775253
  12. Alhadlaq HA, Akhtar MJ, Ahamed M. Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell Biosci. 2015 Sep;5(1):55. https://doi.org/10.1186/s13578-015-0046-6 PMID:26388990
  13. Prasad BD, Nagabhushana H, Thyagarajan K, Sharma S, Shivakumara C, Gopal N, et al. Incorporation of Cr 3+ ions in tuning the magnetic and transport properties of nano zinc ferrite. J Alloys Compd. 2016;657:95–108. https://doi.org/10.1016/j.jallcom.2015.09.270
  14. Shahsavar A, Ansarian R, Bahiraei M. Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol. 2018;340:370–9. https://doi.org/10.1016/j.powtec.2018.09.052
  15. Liu SQ, Zhu XL, Zhou Y, Meng ZD, Chen ZG, Liu CB, et al. Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catal Sci Technol. 2017;7(15):3210–9. https://doi.org/10.1039/C7CY00797C
  16. Sun X, Zhang H, Zhou L, Huang X, Yu C. Polypyrrole-Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithium-Ion Batteries. Small. 2016 Jul;12(27):3732–7. https://doi.org/10.1002/smll.201601143 PMID:27259158
  17. Habibi MH, Habibi AH, Zendehdel M, Habibi M. Dyesensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jun;110:226–32. https://doi.org/10.1016/j.saa.2013.03.051 PMID:23571086
  18. Chatterjee A, Das D, Pradhan S, Chakravorty D. Synthesis of nanocrystalline nickel-zinc ferrite by the sol-gel method. J Magn Magn Mater. 1993;127(1–2):214–8. https://doi.org/10.1016/0304-8853(93)90217-P
  19. Kaliyannan GV, Palanisamy SV, Palanisamy M, Subramanian M, Paramasivam P, Rathanasamy R. Development of sol-gel derived gahnite anti-reflection coating for augmenting the power conversion efficiency of polycrystalline silicon solar cells. Mater Sci Pol. 2019;37(3):465–72. https://doi.org/10.2478/msp-2019-0066
  20. Gul I, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater. 2008;320(3–4):270–5. https://doi.org/10.1016/j.jmmm.2007.05.032
  21. Gul I, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater. 2008;320(3–4):270–5. https://doi.org/10.1016/j.jmmm.2007.05.032
  22. Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H. Microwave-hydrothermal synthesis of nanophase ferrites. J Magn Magn Mater. 1998;81:3041.
  23. Yan W, Jiang W, Zhang Q, Li Y, Wang H. Structure and magnetic properties of nickel–zinc ferrite micro-spheres synthesized by solvothermal method Mater Sci Eng B. 2010;171(1–3):144–8. https://doi.org/10.1016/j.mseb.2010.03.088
  24. Kim W, Saito F. Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3. Powder Technol. 2001;114(1–3):12–6. https://doi.org/10.1016/S0032-5910(00)00256-4
  25. Niyaifar M. Effect of Preparation on Structure and Magnetic Properties of ZnFe2O4. J Magn. 2014;19(2):101–5. https://doi.org/10.4283/JMAG.2014.19.2.101
  26. Venkataraju C, Sathishkumar G, Sivakumar K. Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J Magn Magn Mater. 2010;322(2):230–3. https://doi.org/10.1016/j.jmmm.2009.08.043
  27. Velu Kaliyannan G, Palanisamy SV, Palanisamy M, Chinnasamy M, Somasundaram S, Nagarajan N, et al. Utilization of 2D gahnite nanosheets as highly conductive, transparent and light trapping front contact for silicon solar cells. Appl Nanosci. 2019;9:1427. https://doi.org/10.1007/s13204-018-00949-4
  28. Norrman K, Ghanbari-Siahkali A, Larsen N. 6 Studies of spin-coated polymer films. Annu Rep Sect C Phys Chem. 2005;101:174. https://doi.org/10.1039/b408857n
  29. Velu Kaliyannan G, Palanisamy SV, Rathanasamy R, Palanisamy M, Nagarajan N, Sivaraj S, et al. An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells. J Electron Mater. 2020;49:5937. https://doi.org/10.1007/s11664-020-08361-x
  30. Velu Kaliyannan G, Palanisamy SV, Rathanasamy R, Palanisamy M, Palaniappan SK, Chinnasamy M. Influence of ultrathin gahnite anti-reflection coating on the power conversion efficiency of polycrystalline silicon solar cell. J Mater Sci Mater Electron. 2020;31:2308. https://doi.org/10.1007/s10854-019-02763-2
  31. Deraz N, Alarifi A. Synthesis and characterization of pure and Li2O doped ZnFe2O4 nanoparticles via glycine assisted route. Polyhedron. 2009;28(18):4122–30. https://doi.org/10.1016/j.poly.2009.09.028
  32. Manohar A, Krishnamoorthi C, Naidu KC, Pavithra C. Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl Phys, A Mater Sci Process. 2019;125(7):477. https://doi.org/10.1007/s00339-019-2760-0
  33. Ajmal M, Maqsood A. AC conductivity, density related and magnetic properties of Ni1−xZnxFe2O4 ferrites with the variation of zinc concentration. Mater Lett. 2008;62(14):2077–80. https://doi.org/10.1016/j.matlet.2007.11.019
  34. Mosleh M, Pryds N, Hendriksen PV. Thickness dependence of the conductivity of thin films (La,Sr)FeO3 deposited on MgO single crystal. Mater Sci Eng B. 2007;144(1–3):38–42. https://doi.org/10.1016/j.mseb.2007.07.089
DOI: https://doi.org/10.2478/msp-2021-0002 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 24 - 32
Submitted on: Feb 9, 2021
Accepted on: Feb 21, 2021
Published on: Jun 8, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Arun Kumar Shanmugam, Rajasekar Rathanasamy, Gobinath Velu Kaliyannan, Nithyavathy Nagarajan, Manivasakan Palanisamy, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.