Have a personal or library account? Click to login
Synthesis of single-crystalline Pb(Zr0.52Ti0.48)O3 nanocrystals by hydrothermal method Cover

Synthesis of single-crystalline Pb(Zr0.52Ti0.48)O3 nanocrystals by hydrothermal method

Open Access
|Oct 2019

Abstract

PbZr0.52Ti0.48O3 nanocrystals were synthesized by a hydrothermal method. The effect of NaOH concentration, reaction temperature and time on nucleation and growth of PbZr0.52Ti0.48O3 nanocrystals was investigated. As the 0.05 mol/L PbZr0.52Ti0.48O3 precursors were heated at 200 °C for 21 h with NaOH concentration of 0.5 mol/L, the tetragonal PbZr0.52Ti0.48O3 nanocrystals were formed, and the grain size was more than 20 nm. With increasing the NaOH concentration from 0.5 to 1.5 mol/L, the grain size of PbZr0.52Ti0.48O3 nanocrystals decreased. When the precursors were heated at different temperatures (140 °C to 200 °C) for 21 h with 1.0 mol/L NaOH, single-phase PbZr0.52Ti0.48O3 nanocrystals were obtained at 160 °C to 200 °C. With increasing the reaction temperature from 160 °C to 200 °C, the grains size of PbZr0.52Ti0.48O3 nanocrystals increased from 5 nm to 9 nm. When the precursors were heated at 160 °C in different reaction times from 6 h to 21 h, the evolution from amorphous to crystalline PbZr0.52Ti0.48O3 nanocrystals in correlation with the reaction time was observed. Single crystalline PbZr0.52Ti0.48O3 nanocrystals with narrow size distribution (from 5 nm to 9 nm) were synthesized by controlling the NaOH concentration, reaction temperature and time. The obtained results can find potential application in preparing PbZr0.52Ti0.48O3 thin films on flexible substrates.

DOI: https://doi.org/10.2478/msp-2019-0059 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 473 - 481
Submitted on: Oct 26, 2018
|
Accepted on: Dec 3, 2018
|
Published on: Oct 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Chunyu Deng, Chaoran Qin, Xinyi Li, Shaoqing Li, Zhixiong Huang, Lianmeng Zhang, Xuedong Zhou, Dongyun Guo, Yang Ju, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.