Have a personal or library account? Click to login
Development of sol-gel derived gahnite anti-reflection coating for augmenting the power conversion efficiency of polycrystalline silicon solar cells Cover

Development of sol-gel derived gahnite anti-reflection coating for augmenting the power conversion efficiency of polycrystalline silicon solar cells

Open Access
|Oct 2019

Abstract

The present research is focused on developing ZnAl2O4 (gahnite) spinel as an antireflection coating material for enhanced energy conversion of polycrystalline silicon solar cells (PSSC). ZnAl2O4 has been synthesized using dual precursors, namely aluminum nitrate nonahydrate and zinc nitrate hexahydrate in ethanol media. Diethanolamine has been used as a sol stabilizer in sol-gel process for ZnAl2O4 nanosheet fabrication. ZnAl2O4 nanosheet was deposited layer-by-layer (LBL) on PSSC by spin coating method. The effect of ZnAl2O4 coating on the physical, electrical, optical properties and temperature distribution in PSSC was investigated. The synthesized antireflection coating (ARC) material bears gahnite (ZnAl2O4) spinel crystal structure composed of two dimensional (2D) nanosheets. An increase in layer thickness proves the LBL deposition of ARC on the PSSC substrate. The ZnAl2O4 2D nanosheet comprising ARC on the PSSC was tested and it exhibited a maximum of 93 % transmittance, short-circuit photocurrent of 42.364 mA/cm2 and maximum power conversion efficiency (PCE) 23.42 % at a low cell temperature (50.2 °C) for three-layer ARC, while the reference cell exhibited 33.518 mA/cm2, 15.74 % and 59.1 °C, respectively. Based on the results, ZnAl2O4 2D nanosheets have been proven as an appropriate ARC material for increasing the PCE of PSSC.

DOI: https://doi.org/10.2478/msp-2019-0066 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 465 - 472
Submitted on: Oct 15, 2018
|
Accepted on: Apr 23, 2019
|
Published on: Oct 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gobinath Velu Kaliyannan, Senthil Velmurugan Palanisamy, Manivasakan Palanisamy, Mohankumar Subramanian, Prabhakaran Paramasivam, Rajasekar Rathanasamy, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.