[1] I. Babuska. Stabilitat des Definitionsgebietes mit Rucksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitatstheorie, I, II. Czechoslovak Math. J., 11 (86):76-105, 165-203, 1961.
[2] J. Fernandez. Bonder, Julio. D. Rossi Existence results for the p-Laplacien with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 263(1)(2001), 195-223.10.1006/jmaa.2001.7609
[4] R. Dautrey, J.L.Lions, Mathematical analysis and numerical methods for science and technology I: Physical origins and classical methods, Springer Verlag, Berlin (1985).
[5] Ph. Destuynder, M. Salaun, Mathematical analysis of thin plate models, Mathematics and Applications, 24. Springer-Verlag, Berlin (1996).10.1007/978-3-642-51761-7
[7] A. R. El Amrouss, F. Moradi, M. Moussaoui, Existence of solutions for a fourth order equation with variable exponent, EJDE, 2009(2009), No. 153, 1-13.
[8] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 224. Springer-Verlag, Second edition, Berlin (1983).
[9] C. P. Gupta, Ying C. Kwong, Biharmonic eigenvalue problems and Lp estimates, Internat. J. Math and Math. Sci, 13 (1990), no 3, 469-480.10.1155/S0161171290000692
[12] G. Sweer, A survey on boundary conditions for the biharmonic, Complex Variables and Elliptic Equations, 54(2)(2009), 79-93.10.1080/17476930802657640