Have a personal or library account? Click to login
Existence of solutions for 4p-order PDES Cover
Open Access
|May 2022

References

  1. [1] I. Babuska. Stabilitat des Definitionsgebietes mit Rucksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitatstheorie, I, II. Czechoslovak Math. J., 11 (86):76-105, 165-203, 1961.
  2. [2] J. Fernandez. Bonder, Julio. D. Rossi Existence results for the p-Laplacien with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 263(1)(2001), 195-223.10.1006/jmaa.2001.7609
  3. [3] R.Dalmasso, Positive radial solutions of semilinear elliptic equations of order 2m in annular domains, Hokkaido Mathematical Journal, 23 (1994), 93-101.10.14492/hokmj/1381412487
  4. [4] R. Dautrey, J.L.Lions, Mathematical analysis and numerical methods for science and technology I: Physical origins and classical methods, Springer Verlag, Berlin (1985).
  5. [5] Ph. Destuynder, M. Salaun, Mathematical analysis of thin plate models, Mathematics and Applications, 24. Springer-Verlag, Berlin (1996).10.1007/978-3-642-51761-7
  6. [6] A. R. El Amrouss, S. El Habib, N. Tsouli, Existence of solutions for an eigenvalue problem with weight, EJDE, 2010(2010), No. 45, 1-10.
  7. [7] A. R. El Amrouss, F. Moradi, M. Moussaoui, Existence of solutions for a fourth order equation with variable exponent, EJDE, 2009(2009), No. 153, 1-13.
  8. [8] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 224. Springer-Verlag, Second edition, Berlin (1983).
  9. [9] C. P. Gupta, Ying C. Kwong, Biharmonic eigenvalue problems and Lp estimates, Internat. J. Math and Math. Sci, 13 (1990), no 3, 469-480.10.1155/S0161171290000692
  10. [10] Happel, H.Brenner, Low reynolds number hydrodynamics, Prentice-Hall (1965).
  11. [11] W.E. Langlois, Slow viscous flow, Macmillan Company, (1964).
  12. [12] G. Sweer, A survey on boundary conditions for the biharmonic, Complex Variables and Elliptic Equations, 54(2)(2009), 79-93.10.1080/17476930802657640
  13. [13] A. Szulkin, Ljusternisk-Shnirelmann Theory on C1 manifolds, Ann. Inst.Henri Poincare, Anal. Non., 5 (1998), 119-139.
Language: English
Page range: 179 - 190
Submitted on: Aug 28, 2021
Accepted on: Jan 15, 2022
Published on: May 28, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 F. Moradi, N. Moradi, M. Addam, S. El Habib, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.