Have a personal or library account? Click to login
Existence of solutions for 4p-order PDES Cover
Open Access
|May 2022

Abstract

In this paper, we study the following nonlinear eigenvalue problem: { Δ2pu=λm(x)uinΩ,u=Δu=Δ2p1u=0onΩ. \left\{ {\matrix{ {{\Delta ^{2p}}u = \lambda m\left( x \right)u\,\,\,in\,\,\Omega ,} \cr {u = \Delta u = \ldots {\Delta ^{2p - 1}}u = 0\,\,\,\,on\,\,\partial \Omega .} \cr } } \right. Where Ω is a bounded domain in ℝN with smooth boundary ∂ Ω, N ≥ 1, p ∈ ℕ*, mL (Ω), µ{x ∈ Ω: m(x) > 0} ≠ 0, and Δ2pu := Δ (Δ...(Δu)), 2p times the operator Δ.

Using the Szulkin’s theorem, we establish the existence of at least one non decreasing sequence of nonnegative eigenvalues.

Language: English
Page range: 179 - 190
Submitted on: Aug 28, 2021
Accepted on: Jan 15, 2022
Published on: May 28, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 F. Moradi, N. Moradi, M. Addam, S. El Habib, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.