Have a personal or library account? Click to login
Generalized functional inequalities in Banach spaces Cover
By: H. Dimou,  Y. Aribou and  S. Kabbaj  
Open Access
|Jan 2021

References

  1. [1] M. R. Abdollahpour, R. Aghayaria, and M. Th. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass analytic functions, J. Math. Anal. Appl, 437 (2016), 605–612.10.1016/j.jmaa.2016.01.024
  2. [2] J. Aczel and J. Dhombres, Functional equations in Several Variables, Cambrige University Press, 31, (1989).10.1017/CBO9781139086578
  3. [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.10.2969/jmsj/00210064
  4. [4] Y. Aribou and S. Kabbaj, Generalized Functional inequalities in non-Archimedean Banach spaces, Asia Math-ematika, 2 (2018), 61–66.
  5. [5] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.), 22(6) (2006), 1789–1796.10.1007/s10114-005-0697-z
  6. [6] A. Bahyrycz and J. Olko, On stability of the general linear equation, Aequat. Math, 89 (2015), 1461–1474.10.1007/s00010-014-0317-z
  7. [7] J. Brzde¸k, D. Popa, and B. Xu, Hyers-Ulam stability for linear equations of higher orders, Acta Math. Hungar, 120(1-2) (2008), 1–8.10.1007/s10474-007-7069-3
  8. [8] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc, 57 (1951), 223–237.10.1090/S0002-9904-1951-09511-7
  9. [9] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math, 27 (1984), 76–86.10.1007/BF02192660
  10. [10] K. Ciepliǹski, Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey, Ann. Funct. Anal, 3(2012), 151–164.10.15352/afa/1399900032
  11. [11] S. Czerwik, On the stability of the quadratic mapping in normed spaces Abh. Math. Sem. Univ. Hamburg, 62(1992), 59–64.10.1007/BF02941618
  12. [12] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl, 184(1994), 431–436.10.1006/jmaa.1994.1211
  13. [13] K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahres-ber Deutsch. Math. Verein, 6(1897), 83–88.
  14. [14] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. acad. Sci. U.S.A, 27(1941), 222–224.10.1073/pnas.27.4.222107831016578012
  15. [15] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhuser, Basel, (1998).10.1007/978-1-4612-1790-9
  16. [16] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, (2001).
  17. [17] S.-M. Jung, C. Mortici, and M. Th. Rassias, On a functional equation of trigonometric type, Applied Mathematics and Computation, 252(2015).10.1016/j.amc.2014.12.019
  18. [18] S.-M. Jung and M. Th. Rassias, A linear functional equation of third order associated to the Fibonacci numbers, Abstract and Applied Analysis, 2014(2014), Article ID 137468.10.1155/2014/137468
  19. [19] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht(1997).
  20. [20] M.S. Moslehian and M.Th. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math, 1 (2007), 325–334.10.2298/AADM0702325M
  21. [21] M.S. Moslehian, Gh.Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces Nonlinear Anal, 69 (2008), 3405–3408.10.1016/j.na.2007.09.023
  22. [22] M.S. Moslehian, Gh.Sadeghi, Stability of two types of cubic functional equations in non-Archimedean spaces, Real Anal. Exchange, 33 (2008), 375–383.10.14321/realanalexch.33.2.0375
  23. [23] A.K. Mirmostafaee, Stability of quartic mappings in non-Archimedean normed spaces, Kyungpook Math. J., 49(2) (2009), 289–297.10.5666/KMJ.2009.49.2.289
  24. [24] A. Najati, F. Moradlou, Hyers-Ulam-Rassias stability of the Apollonius type quadratic mapping in non-Archimedean spaces, Tamsui Oxf. J. Math. Sci., 24 (2008), 367–380.
  25. [25] C. Park, Functional inequalities in non-Archimedean normed spaces, Acta Mathematica Sinica, English Series, 33(3)(2015), 353–366.10.1007/s10114-015-4278-5
  26. [26] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc, 72(1978), 297–300.10.1090/S0002-9939-1978-0507327-1
  27. [27] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, (2003).10.1007/978-94-017-0225-6
  28. [28] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequat. Math, 66(2003), 191–200.10.1007/s00010-003-2684-8
  29. [29] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, FL, (2011).10.1201/b10722
  30. [30] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Math. Fis. Milano, 53(1983), 113–129.10.1007/BF02924890
  31. [31] W. Smajdor, Note on a Jensen type functional equation, Publ. Math. Debrecen, 63(2003), 703–714.
  32. [32] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl., 272(2002), 604–616.10.1016/S0022-247X(02)00181-6
  33. [33] S. M. Ulam, A collection of the Mathematical Problems, Interscience Publ. New York, (1960).
  34. [34] S. M. Ulam, Problem in Modern Mathematics, Sciences Editions, John Wiley and Sons Inc. New York, (1969).
Language: English
Page range: 337 - 349
Submitted on: Aug 30, 2020
Accepted on: Jan 20, 2021
Published on: Jan 29, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 H. Dimou, Y. Aribou, S. Kabbaj, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.