Have a personal or library account? Click to login
Generalized functional inequalities in Banach spaces Cover
By: H. Dimou,  Y. Aribou and  S. Kabbaj  
Open Access
|Jan 2021

Abstract

In this paper, we solve and investigate the generalized additive functional inequalities F(i=1nxi)-i=1nF(xi) F(1ni=1nxi)-1ni=1nF(xi) \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| and F(1ni=1nxi)-1ni=1nF(xi) F(i=1nxi)-i=1nF(xi) . \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\|.

Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.

Language: English
Page range: 337 - 349
Submitted on: Aug 30, 2020
Accepted on: Jan 20, 2021
Published on: Jan 29, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 H. Dimou, Y. Aribou, S. Kabbaj, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.