References
- Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846.
https://doi.org/10.1016/j.etap.2015.09.016 - Bajda, T. (2010). Solubility of mimetite Pb5(AsO4)3Cl at 5–55 C. Environmental Chemistry, 7(3), 268–278.
https://doi.org/10.1071/EN10021 - Bajda, T., Franus, W., Manecki, A., Manecki, M., Mozgawa, W., & Sikora, M. (2004). Sorption of heavy metals on natural zeolite and smectite-zeolite shale from the Polish Flysch Carpathians. Polish Journal of Environmental Studies, 13(Suppl III), 7–10.
https://www.academia.edu/download/39747994/Sorption_of_heavy_metals_on_natural_zeol20151106-2731-1iqtzv0.pdf - Banning, A. (2021). Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwater. Journal of Hazardous Materials, 405, 124186.
https://doi.org/10.1016/j.jhazmat.2020.124186 - Bektaş, N., & Kara, S. (2004). Removal of lead from aqueous solutions by natural clinoptilolite: Equilibrium and kinetic studies. Separation and Purification Technology, 39(3), 189–200.
https://doi.org/10.1016/j.seppur.2003.12.001 - Cama, J., Ayora, C., Querol, X., & Ganor, J. (2005). Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. Environmental Science & Technology, 39(13), 4871–4877.
https://doi.org/10.1021/es0500512 - Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2003). Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere, 50(1), 155–163.
https://doi.org/10.1016/S0045-6535(02)00351-X - Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371.
https://doi.org/10.1016/j.jhazmat.2006.12.034 - Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210(1–3), 248–256.
https://doi.org/10.1016/j.desal.2006.05.049 - Kleszczewska-Zębala, A., Manecki, M., Bajda, T., Rakovan, J., & Borkiewicz, O. J. (2016). Mimetite formation from goethite-adsorbed ions. Microscopy and Microanalysis, 22(3), 698–705.
https://doi.org/10.1017/S1431927616000829 - Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2003). Arsenite oxidation and arsenate determination by the molybdenum blue method. Talanta, 61(3), 267–276.
https://doi.org/10.1016/S0039-9140(03)00274-1 - Magalhães, M. C. F. (2002). Arsenic. An environmental problem limited by solubility. Pure and Applied Chemistry, 74(10), 1843–1850.
https://doi.org/10.1351/pac200274101843 - Magalhães, M. C. F., & Silva, M. C. M. (2003). Stability of lead (II) arsenates. Monatshefte fuer Chemie/Chemical Monthly, 134(5), 735–743.
https://doi.org/10.1007/s00706-002-0581-9 - Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178–181.
https://doi.org/10.1007/s10311-005-0030-1 - Marciniak, H., Diduszko, R., & Kozak, M. (2006). XRAYAN Program do Rentgenowskiej Analizy Fazowej, Wersja 4.0.1. KOMA.
- Mozgawa, W., & Bajda, T. (2005). Spectroscopic study of heavy metals sorption on clinoptilolite. Physics and Chemistry of Minerals, 31(10), 706–713.
https://doi.org/10.1007/s00269-004-0433-8 - Mozgawa, W., Król, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924, 427–433.
https://doi.org/10.1016/j.molstruc.2008.12.028 - Murcott, S. (2012). Arsenic contamination in the world. IWA Publishing.
- Oter, O., & Akcay, H. (2007). Use of natural clinoptilolite to improve water quality: Sorption and selectivity studies of lead (II), copper (II), zinc (II), and nickel (II). Water Environment Research, 79(3), 329–335.
https://doi.org/10.2175/106143006X111880 - Payne, K. B., & Abdel-Fattah, T. M. (2004). Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 39(9), 2275–2291.
https://doi.org/10.1081/ESE-200026265 - Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 40(4), 723–749.
https://doi.org/10.1081/ESE-200048254 - Ravenscroft, P., Brammer, H., & Richards, K. (2011). Arsenic pollution: A global synthesis. John Wiley & Sons.
- Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.
https://doi.org/10.1016/j.envint.2009.01.005 - Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.
https://doi.org/10.1016/S0883-2927(02)00018-5 - Solińska, A., & Bajda, T. (2022). Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewater. Chemosphere, 286, 131772.
https://doi.org/10.1016/j.chemosphere.2021.131772 - Wilkin, R. T., & Barnes, H. L. (1998). Solubility and stability of zeolites in aqueous solution; I, Analcime, Na−, and K-clinoptilolite. American Mineralogist, 83(7–8), 746–761.
https://doi.org/10.2138/am-1998-7-807 - Wołowiec, M., Muir, B., Zięba, K., Bajda, T., Kowalik, M., & Franus, W. (2017). Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy & Fuels, 31(8), 8803–8812.
https://doi.org/10.1021/acs.energyfuels.7b01124 - World Health Organization. (2018, February 15). Arsenic.
https://www.who.int/news-room/fact-sheets/detail/arsenic