Have a personal or library account? Click to login

Some notes on the IUGS classification of lamprophyric rocks

Open Access
|Aug 2024

References

  1. Beard, A. D., Downes, H., Hegner, E., and Sablukov, S. M. (2000). Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos, 51 (1-2), p. 47–73. https://doi.org/10.1016/S0024-4937(99)00074-2
  2. Birch, W. D. & Barron, L. M. (1997). Diamonds. Gem minerals of Victoria. Special Publication Mineralogical Society of Victoria 4, p. 16–33.
  3. Bottrill, R. S. (1998). Diamond in Tasmania. Tasmanian Geological Survey Record 09, p. 1–6.
  4. Casalini, M., Avanzinelli, R., Tommasini, S., Natali, C., Bianchini, G., Prelević, D., … and Conticelli, S. (2022). Petrogenesis of Mediterranean lamproites and associated rocks: The role of overprinted metasomatic events in the post-collisional lithospheric upper mantle. https://doi.org/10.1144/SP513-2021-36
  5. Chalapathi Rao, N. C., Giri, R. K., Sharma, A., and Pandey, A. (2020). Lamprophyres from the Indian shield: A review of their occurrence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks. Episodes Journal of International Geoscience, 43 (1), p. 231–248. https://doi.org/10.18814/epiiugs/2020/020014
  6. Chan, G. N., Malpas, J., Xenophontos, C., & Lo, C. H. (2008). Magmatism associated with Gondwanaland rifting and Neo-Tethyan oceanic basin development: evidence from the Mamonia Complex, SW Cyprus. Journal of the Geological Society, 165(3), p. 699–709. https://doi.org/10.1144/0016-76492007-050
  7. Dai, H. K., Oliveira, B., Zheng, J. P., Griffin, W. L., Afonso, J. C., Xiong, Q., and O’Reilly, S. Y. (2021). Melting dynamics of Late Cretaceous lamprophyres in central Asia suggest a mechanism to explain many continental intraplate basaltic suite magmatic provinces. Journal of Geophysical Research Solid Earth, 126(4), e2021JB021663. https://doi.org/10.1029/2021JB021663
  8. Dalton, H., Giuliani, A., and Pearson, D. G. (2024). A new global kimberlite geochemistry dataset: the benefits of open and complete data sharing. International Kimberlite Conference: Extended Abstracts, 12. https://doi.org/10.29173/ikc4179
  9. Davies, R. M., O’Reilly, S. Y., Griffin, W. L. (2002). Multiple origins of alluvial diamonds from New South Wales, Australia. Economic Geology, 97 (1), p. 109–123. https://doi.org/10.2113/gsecongeo.97.1.109
  10. Gill, R., & Fitton, G. (2022). Igneous rocks and processes: a practical guide.J. Wiley andSons,496 p. https://bcs.wiley.com/he-bcs/Books?action=chapter&bcsId=12385&itemId=1119455669&chapterId=148510
  11. Giuliani, A., Jackson, M. G., Fitzpayne, A., and Dalton, H. (2021). Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proceedings of the National Academy of Sciences, 118(1), e2015211118. https://doi.org/10.1073/pnas.2015211118
  12. Gläser, L., Grosche, A., Voudouris, P. C., and Haase, K. M. (2022). The high-K calc-alkaline to shoshonitic volcanism of Limnos, Greece: Implications for the geodynamic evolution of the northern Aegean. Contributions to Mineralogy and Petrology, 177(8), p. 73. https://doi.org/10.1007/s00410-022-01940-7
  13. Godard, G., Chabou, M. C., Adjerid, Z., Bendaoud, A. (2014). First African diamonds discovered in Algeria by the ancient Arabo-Berbers: History and insight into the source rocks. Comptes Rendus Geoscience, 346 (7-8), p. 179–189. https://doi.org/10.1016/j.crte.2014.03.007
  14. Griffin, W. L., O’Reilly, S. Y., and Davies, R. M. (2000). Subduction—related diamond deposits? Constraints, possibilities and new data from eastern Australia. Reviews in Economic Geology, 11, p. 291–310.
  15. Hall, A. (1982). The Pendennis peralkaline minette. Mineralogical Magazine, 45(337), p. 257–266. https://doi.org/10.1180/minmag.1982.045.337.29
  16. Hausel, W. D. (1998). Diamonds and mantle source rocks in the Wyoming craton with a discussion of other US occurrences. Wyoming State Geological Survey Report of Investigations 53, 93 p.
  17. Hutchison, M. T., & Frei, D. (2009). Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance. Lithos, 112, p. 318–333. https://doi.org/10.1016/j.lithos.2009.05.034
  18. Izokh, A. E., Chayka, I. F., Gaskov, I. V., and Egorova (2024). Differentiation of Lamproitic Magma: Case Study of Mesozoic High-K Dikes of the Ryabinovyi Massif (Central Aldan). Russian Geology and Geophysics, 65(2), p. 195-213. https://doi.org/10.2113/RGG20234610
  19. John J. St. (2016). The Thumb (Navajo Volcanic Field, northwestern New Mexico, USA) https://www. flickr.com/photos/jsjgeology/29472674481/in/photostream/
  20. Kaminsky, F. V., Sablukov, S. M., Sablukova, L. I., and Channer, D. M. D. (2004). Neoproterozoic ‘anomalous’ kimberlites of Guaniamo, Venezuela: mica kimberlites of ‘isotopic transitional type. Lithos, 76 (1-4), p. 565–590. https://doi.org/10.1016/j.lithos.2004.03.035
  21. Kamvisis, I., & Phani, P. R. C. (2022). The “Lamprophyre Clan” Revisited. Journal of the Geological Society of India, 98 (9), p.1205–1209. https://doi.org/10.1007/s12594-022-2153-4
  22. Kamvisis, I.-N. G., Vasyukova, E. A. (2021). Simple steps for the detection and classification of different lamprophyric rocks: a case study from Greece. Mineralogia, 52 (1), p. 1–9. https://doi.org/10.2478/mipo-2021-0001
  23. Kjarsgaard, B. A., de Wit, M., Heaman, L. M., Pearson, D. G., Stiefenhofer, J., Janusczcak, N., and Shirey, S. B. (2022). A review of the geology of global diamond mines and deposits. Reviews in Mineralogy and Geochemistry, 88 (1), p. 1–117. https://doi.org/10.2138/rmg.2022.88.01
  24. Kopylova M. G. (2022). What lamprophyres teach us about kimberlites: Lessons from the Kola Alkaline Carbonatitic Province https://www.youtube.com/watch?v=aZJbpjpATpcandfeature=youtu.be
  25. Krmíček, L., & Chalapathi Rao, N. (2022). Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis. https://doi.org/10.1144/SP513-2021-159
  26. Krmíček, L., Romer, R. L., Timmerman, M. J., Ulrych, J., Glodny, J., Přichystal, A., and Sudo, M. (2020). Long-lasting (65 Ma) regionally contrasting late-to post-orogenic Variscan mantle-derived potassic magmatism in the Bohemian Massif. Journal of Petrology, 61 (7), egaa072. https://doi.org/10.1093/petrology/egaa072
  27. Lefebvre, N., Kopylova, M., and Kivi, K. (2005). Archean calc-alkaline lamprophyres of Wawa, Ontario, Canada: Unconventional diamondiferous volcaniclastic rocks. Precambrian Research, 138(1-2), 57–87. https://doi.org/10.1016/j.precamres.2005.04.005
  28. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., and Bateman, P. (Eds.). (2002). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 236 p.
  29. Lustrino, M., Agostini, S., Chalal, Y., Fedele, L., Stagno, Colombi, F., and Bouguerra, A. (2016). Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites. Journal of Volcanology and Geothermal Research, 327, p. 539–553. https://doi.org/10.1016/j.jvolgeores.2016.09.021
  30. Lustrino, M., Bonin, B., Doroshkevich, A. et al. (2022). Report of the IUGS Task Group on Igneous Rocks, 7 p.
  31. Mei Houjun, Tan Jizu, Zhang Xingchan et al. (1989). Ultrapotassic rocks in Qinghai Xizang (Tibet) Plateau and adjacent areas and their circumstances, Chinese Academy of Sciences Developments in Geoscience of CAS, Contrib. to 28thIGC, Beijing, Science Press 1, p. 119–128.
  32. Mitchell, R. H. (1994). The lamprophyre facies. Mineralogy and Petrology, 51, p. 137–146. https://doi.org/10.1007/BF01159724
  33. Mitchell, R. H. (1995). The role of petrography and lithogeochemistry in exploration for diamondiferous rocks. Journal of Geochemical Exploration, 53(1-3), p. 339–350. https://doi.org/10.1016/0375-6742(94)00014-3
  34. Mitchell, R. H. (2005). Potassic magmas derived from metasomatized lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. Group Discussion on Kimberlites and Related Rocks of India organised by the Geological Society of India.
  35. Mitchell, R. H. (2007). Potassic rocks from the Gondwana coalfields of India: Closing Pandora’s box of petrological confusion? Journal-Geological Society of India, 69(3), p. 505.
  36. Mitchell, R. H. (2020). Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: a review of their nomenclature, characterization and origins. Geoscience Canada, 47(3), p. 119–142. https://doi.org/10.12789/geocanj.2020.47.162
  37. Mitchell, R. H., & Bergman, S. C. (1991). Petrology of lamproites. Springer Science and Business Media, p. 447.
  38. Nosova, A. A., Sazonova, L. V., Kargin, A. V., Smirnova, M. D., Lapin, A. V., & Shcherbakov, V. D. (2018). Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre-and post-trap aillikites. Contributions to Mineralogy and Petrology, 173, 1–27. https://doi.org/10.1007/s00410-018-1480-3
  39. O’Neill, C., & Wyman, D. A. (2006). Geodynamic modeling of Late Archean subduction: Pressure-temperature constraints from greenstone belt diamond deposits. Washington DC American Geophysical Union Geophysical Monograph Series, 164, p. 177–188. https://doi.org/10.1029/164GM12
  40. Peterson, T. D., Van Breemen, O., Sandeman, H., and Cousens, B. (2002). Proterozoic (1.85-1.75 Ga) igneous suites of the Western Churchill Province: granitoid and ultrapotassic magmatism in a reworked Archean hinterland. Precambrian Research, 119(1-4), p. 73–100. https://doi.org/10.1016/S0301-9268(02)00118-3
  41. Phani, P. R., & Raju,V. N. (2017). A New kimberlite pipe in Balkamthota Vanka, Pennahobilam, Anantapur district, Andhra Pradesh, India. Field aspects and preliminary investigations. Periodico di Mineralogia, 86 (3), p. 213–228. https://doi.org/10.2451/2017PM689
  42. Pilbeam, L. H., Nielsen, T. F. D., Waight, T., and Tappe, S. (2024). Links between calcite kimberlite, aillikite and carbonatite in West Greenland: Numeric modeling of compositional relationships. Journal of Petrology, egae059.
  43. Polyakov, G., Nguyen, T. Y., Balykin, P., Tran, T. H., Panina, L., Ngo, T. P., … Hoang, V. H. (1995). Geology and substance composition of cocites of North Vietnam. International Kimberlite Conference: Extended Abstracts, 6(1), 449–451. https://doi.org/10.29173/ikc1926
  44. Prelević, D., Akal, C. and Foley, S. F. (2008). Orogenic vs anorogenic lamproites in a single volcanic province: Mediterranean-type lamproites from Turkey, Donald D Harrington Symposium on the Geology of the Aegean, IOP Conference Series-Earth and Environmental Science 2, 012024.
  45. Prelević, D., Foley, S. F., Cvetković, V. (2007). A review of petrogenesis of Mediterranean Tertiary lamproites: A perspective from the Serbian ultrapotassic province, in Cenozoic Volcanism in the Mediterranean Area, eds. Luigi Beccaluva, Gianluca Bianchini, Marjorie Wilson. https://doi.org/10.1130/2007.2418(06)
  46. Rock, N. (1991). Lamprophyres. Springer Science and Business Media 285 p.
  47. Romu, I., Luttinen, A. and O’Brien, H. (2008). Lamproite-orangeite transition in 159 Ma dykes of Dronning Maud Land, Antarctica?. International Kimberlite Conference: Extended Abstracts, 9. https://doi.org/10.29173/ikc3579
  48. Rosenbusch, H. (1887). Mikroskopische Physiographie der Mineralien und Gesteine. Vol.II. Massige Gesteine. Schweizerbart, Stuttgart. 2nd Edn, 877pp.
  49. Sarkar, S., Giuliani, A., Dalton, H., Phillips, D., Ghosh, S., Misev, S., and Maas, R. (2023). Derivation of Lamproites and Kimberlites from a Common Evolving Source in the Convective Mantle: The Case for Southern African ‘Transitional Kimberlites’. Journal of Petrology, 64(7), egad043. https://doi.org/10.1093/petrology/egad043
  50. Scott-Smith, B. H. S. (1995). Petrology and diamonds. Exploration and Mining Geology, 2(4), p. 127–140.
  51. Scott-Smith, B. (2017). Kimberlites – from mantle to mine. International Kimberlite Conference: Extended Abstracts, 11. https://doi.org/10.29173/ikc4018
  52. Sheppard, S., and Taylor, W. R. (1992). Barium-and LREE-rich, olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia. Lithos, 28(3-6), p. 303–325. https://doi.org/10.1016/0024-4937(92)90012-N
  53. Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P., … and Walter, M. J. (2013). Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75(1), p. 355–421. https://doi.org/10.2138/rmg.2013.75.12
  54. Smith, C., Bulanova, G., Walter, M., Kohn, S., Mikhail, S., and Gobbo, L. (2012). Origin of diamonds from the Dachine ultramafic, French Guyana. International Kimberlite Conference: Extended Abstracts, 10. https://doi.org/10.29173/ikc3677
  55. Smith, C. B., Haggerty, S. E., Chatterjee, B., Beard, A., and Townend, R. (2013). Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion. Lithos, 182, p. 102–113. https://doi.org/10.1016/j.lithos.2013.10.006
  56. Smith, D., Griffin, W. L., Ryan, C. G., & Sie, S. H. (1991). Traceelement zonation in garnets from The Thumb: heating and melt infiltration below the Colorado Plateau. Contributions to Mineralogy and Petrology, 107, p. 60–79. https://doi.org/10.1007/BF00311185
  57. Tacker, C. (2014). Ten new North Carolina diamonds.https://naturalsciencesresearch.wordpress.com/2014/12/04/ten-new-north-carolina-diamonds/
  58. Tappe, S., Foley, S. F., Jenner, G. A., and Kjarsgaard, B. A. (2005). Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. Journal of Petrology, 46 (9), p. 1893–1900. https://doi.org/10.1093/petrology/egi039
  59. Tappe, S., Shaikh, A. M., Wilson, A. H., and Stracke, A. (2022). Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. https://doi.org/10.1144/SP513-2021-84
  60. Tran, H. T., Polyakov, G.V., Tran, A. T., Borisenko, A. S., Izokh, A. E., Balykin, P. A., … and Pham, D. T. (2016). Intraplate magmatism and metallogeny of North Vietnam. Switzerland: Springer International Publishing 372 p. https://doi.org/10.3190/jgeosci.158
  61. Ulrych, J., Adamovic, J., Krmíček, L., Ackerman, L., and Balogh, K. (2014). Revision of Scheumann’s classification of melilitic lamprophyres and related melilitic rocks in light of new analytical data. Journal of Geosciences, 59(1), p. 3–22. http://doi.org/10.3190/jgeosci.158
  62. Van Gorsel, J. T. (2018). Bibliography of the Geology of Indonesia and Surrounding Areas. Edition 7.0. Chapter II. Sumatra-Sundaland 309 p., https://www.vangorselslist.com/sundaland.html
  63. Vladykin, N. (2008). Formation types of lamproite complexes-systematization and chemism. International Kimberlite Conference: Extended Abstracts, 9. https://doi.org/10.29173/ikc3620
  64. Wagner, C., and Velde, D. (1985). Mineralogy of two peralkaline, arfvedsonite-bearing minettes. A new occurrence of Zn-rich chromite. Bulletin de minéralogie, 108 (2), p. 173–187.
  65. Woolley, A. R. (2019). Alkaline Rocks and Carbonatites of the World, Part 4: Antarctica, Asia and Europe (excluding the former USSR), Australasia and Oceanic Islands. GSL 562 p.
  66. Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M., and Scott Smith, B. H. (1996). Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. The Canadian Mineralogist, 34(2), p. 175–186.
  67. Xiang, L., Zheng, J., Zhai, M., and Siebel, W. (2020). Geochemical and Sr-Nd-Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block, South China. Contributions to Mineralogy and Petrology, 175, p. 1–18. https://doi.org/10.1007/s00410-020-1668-1
DOI: https://doi.org/10.2478/mipo-2024-0003 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 30 - 39
Submitted on: May 14, 2024
Accepted on: Aug 6, 2024
Published on: Aug 29, 2024
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Ioannis Kamvisis, Pothuri Ramesh Chandra Phani, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.