Have a personal or library account? Click to login

Origin of calcite by magma mixing in mingled rocks of the Ghansura Rhyolite Dome, Bathani volcano-sedimentary sequence, eastern India

Open Access
|Jul 2024

References

  1. Acharyya, S. K. (2003). The nature of Mesoproterozoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Research, 6(2), 197–214. http://dx.doi.org/10.1016/S1342-937X(05)70360-9
  2. Barbarin, B., & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1–2), 145–153. https://doi.org/10.1017/S0263593300007835
  3. Bateman, R., Martín, M. P., & Castro, A. (1992). Mixing of cordierite granitoid and pyroxene gabbro, and fractionation, in the Santa Olalla tonalite (Andalucia). Lithos, 28(2), 111–131. https://doi.org/10.1016/0024-4937(92)90027-V
  4. Bunsen, R. W. (1851). Uber die Processe des vulkanischen Gesteinsbildungen Islands. Annalen der Physik und Chemie (Dritte Reihe), 159(6), 197–272.
  5. Castro, A., & Stephens, W. E. (1992). Amphibole-rich polycrystalline clots in calc-alkaline granitic rocks and their enclaves. The Canadian Mineralogist, 30(4), 1093–1112.
  6. Cashman, K., & Blundy, J. (2000). Degassing and crystallization of ascending andesite and dacite. PhilosophicalTransactions of the Royal Society A, 358(1770), 1487–1513. https://doi.org/10.1098/rsta.2000.0600
  7. Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M., & Papale, P. (2007). Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264(3–4), 402–419. https://doi.org/10.1016/j.epsl.2007.09.032
  8. Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland.
  9. Droop, G. T. R. (1987). A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361), 431–435. https://doi.org/10.1180/minmag.1987.051.361.10
  10. Edmonds, M., & Woods, A. W. (2018). Exsolved volatiles in magma reservoirs. Journal of Volcanology and Geothermal Research, 368, 13–30. https://doi.org/10.1016/j.jvolgeores.2018.10.018
  11. Gerlach, T. M. (1980). Evaluation of volcanic gas analyses from Kilauea volcano. Journal of Volcanology and Geothermal Research, 7(3–4), 295–317. https://doi.org/10.1016/0377-0273(80)90034-7
  12. Gogoi, B. (2022). Late Paleoproterozoic bimodal magmatic rocks in the Nimchak Granite Pluton of the Bathani volcano-sedimentary sequence, Eastern India: Implications for the Columbia supercontinent formation with respect to the Indian landmass. Periodico di Mineralogia, 91(1), 1–20. https://doi.org/10.13133/2239-1002/16978
  13. Gogoi, B., & Borah, D. (2023). Decoding the nature of interaction between felsic clasts and mafic magma in a subvolcanic magma chamber from amphibole–titanite transformation and chemistry. Acta Geochimica, 42(5), 845–858. https://doi.org/10.1007/s11631-023-00626-6
  14. Gogoi, B., & Chauhan, H. (2021). Dynamics of a subvolcanic magma chamber inferred from viscous instabilities owing to mafic-felsic magma interactions. Arabian Journal of Geosciences, 14(16), 1626. https://doi.org/10.1007/s12517-021-08140-w
  15. Gogoi, B., & Saikia, A. (2018). Role of viscous folding in magma mixing. Chemical Geology, 501, 26–34. https://doi.org/10.1016/j.chemgeo.2018.09.035
  16. Gogoi, B., Saikia, A., Ahmad, M., & Ahmad, T. (2018). Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India. Mineralogy and Petrology, 112(2), 393–413. https://doi.org/10.1007/s00710-017-0540-0
  17. Gozzi, F., Gaeta, M., Freda, C., Mollo, S., Di Rocco, T., Marra, F., Dallai, L., & Pack, A. (2014). Primary magmatic calcite reveals origin from crustal carbonate. Lithos, 190–191, 191–203. https://doi.org/10.1016/j.lithos.2013.12.008
  18. Holloway, J. R. (1976). Fluids in the evolution of granitic magmas: Consequences of finite CO2 solubility. Geological Society of America Bulletin, 87(10), 1513–1518. https://doi.org/10.1130/0016-7606(1976)87%3C1513:FITEOG%3E2.0.CO;2
  19. Humphreys, M. C. S., Edmonds, M., Christopher, T., & Hards, V. (2010). Magma hybridisation and diffusive exchange recorded in heterogeneous glasses from Soufriere Hills Volcano, Montserrat. Geophysical Research Letters, 37(19), Article L00E06. https://doi.org/10.1029/2009GL041926
  20. Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145), 293–305. https://doi.org/10.11456/shigenchishitsu1951.27.293
  21. Jarvis, P. A., Pistone, M., Secretan, A., Blundy, J. D., Cashman, K. V., Mader, H. M., & Baumgartner, L. P. (2021). Crystal and volatile controls on the mixing and mingling of magmas. In Crustal magmatic system evolution: Anatomy, architecture, and physico-chemical processes (pp. 125–150). https://doi.org/10.1002/9781119564485
  22. Lavaure, S. & Sawyer, E. W. (2011). Source of biotite in the Wuluma Pluton: Replacement of ferromagnesian phases and disaggregationof enclaves and schlieren. Lithos, 125(1–2), 757–780. https://doi.org/10.1016/j.lithos.2011.04.005
  23. Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, E., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Youzhi, G. (1997). Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35(1), 219–246.
  24. Lowenstern, J. B. (2001). Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36(6), 490–502. https://doi.org/10.1007/s001260100185
  25. Mason, E., Edmonds, M., & Turchyn, A. V. (2017). Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 357(6348), 290–294. https://doi.org/10.1126/science.aan5049
  26. Metrich, N., & Clocchiatti, R. (1989). Melt inclusion investigation of the volatile behaviour in historic alkali basaltic magmas of Etna. Bulletin of Volcanology, 51(3), 185–198. https://doi.org/10.1007/BF01067955
  27. Nagamine, K., & Araki, M. (2020). Comparison of S-type/I-type (Australia) and Ilmenite-series/Magnetite-series (Japan) in terms of gas features occluded in granitoids. Geochemical Journal, 54(4), 159–164. https://doi.org/10.2343/geochemj.2.0591
  28. Nelson, C. A., & Sylvester, A. G. (1971). Wall rock decarbonation and forcible emplacement of Birch Creek pluton, southern White Mountains, California. Geological Society of America Bulletin, 82(10), 2891–2904. https://doi.org/10.1130/0016-7606(1971)82[2891:WRDAFE]2.0.CO;2
  29. Newman, S., & Lowenstern, J. B. (2002). VolatileCalc: A silicate melt–H2O-CO2 solution model written in Visual Basic for excel. Computers & Geosciences, 28(5), 597–604. https://doi.org/10.1016/S0098-3004(01)00081-4
  30. Pistone, M., Blundy, J., & Brooker, R. A. (2017). Water transferduring magma mixing events: Insights into crystal mush rejuvenationand melt extraction processes. American Mineralogist, 102(4), 766–776. https://doi.org/10.2138/am-2017-5793
  31. Saikia, A., Gogoi, B., Ahmad, M., Kumar, R., Kaulina, T., & Bayanova, T. (2019). Mineral chemistry, Sr–Nd isotope geochemistry and petrogenesis of the granites of Bathani volcano-sedimentary sequence from the Northern Fringe of Chotanagpur Granite Gneiss Complex of Eastern India. In: Mondal, M. (eds) Geological evolution of the Precambrian Indian shield. Society of Earth Scientists Series (pp. 79–120). Springer,. https://doi.org/10.1007/978-3-319-89698-4_5
  32. Saikia, A., Gogoi, B., Kaulina, T., Lialina, L., Bayanova, T., & Ahmad, M. (2017). Geochemical and U–Pb zircon age characterization of granites of the Bathani Volcano Sedimentary sequence, Chotanagpur Granite Gneiss Complex, eastern India: Vestiges of the Nuna supercontinent in the Central Indian Tectonic Zone. Geological Society, London, Special Publications, 457(1), 233–252. https://doi.org/10.1144/SP457.11
  33. Stephens, W. E. (2001). Polycrystalline amphibole aggregates (clots) in granites as potential I-type restite: An ion microprobe study of rare-earth distributions. Australian Journal of Earth Sciences, 48(4), 591–601. https://doi.org/10.1046/j.1440-0952.2001.00880.x
  34. Swanson, S. E. (1979). The effect of CO 2 on phase equilibria and crystal growth in the system KAlSi 3 O 8-NaAlSi 3 O 8-CaAl 2 Si 2 O 8-SiO 2-H 2 O-CO 2 to 8000 bars. American Journal of Science, 279(6), 703–720.
  35. Symonds, R. B., Rose, W. I., Bluth, G. J., & Gerlach, T. M. (1994). Volcanic-gas studies; methods, results, and applications. Reviews in mineralogy and geochemistry, 30(1), 1–66.
  36. Tate, M. C., Clarke, D. B., & Heaman, L. M. (1997). Progressive hybridisation between Late Devonian mafic-intermediate and felsic magmas in the Meguma Zone of Nova Scotia, Canada. Contributions to Mineralogy and Petrology, 126, 401–415.
  37. Tischendorf, G., Gottesmann, B., Förster, H. J., & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409), 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
  38. Treiman, A. H., & Essene, E. J. (1985). The Oka carbonatite complex, Quebec: Geology and evidence for silicate-carbonate liquid immiscibility. American Mineralogist, 70(11–12), 1101–1113.
  39. Ubide, T., Galé, C., Larrea, P., Arranz, E., Lago, M., & Tierz, P. (2014). The relevance of crystal transfer to magma mixing: A case study in composite dykes from the Central Pyrenees. Journal of Petrology, 55(8), 1535–1559. https://doi.org/10.1093/petrology/egu033
  40. Wiebe, R. A. (1996). Mafic-silicic layered intrusions: The role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1–2), 233–242. https://doi.org/10.1017/S0263593300006647
  41. White, A. F., Schulz, M. S., Lowenstern, J. B., Vivit, D. V., & Bullen, T. D. (2005). The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica et Cosmochimica Acta, 69(6), 1455–1471. https://doi.org/10.1016/j.gca.2004.09.012
  42. Wiesmaier, S., Morgavi, D., Renggli, C. J., Perugini, D., DeCampos, C. P., & Hess, K. U., Ertel-Ingrisch, W., Lavallée, Y., Dingwell, D. B. (2015). Magma mixingenhanced by bubble segregation. Solid Earth, 6(1), 1007–1023. https://doi.org/10.5194/se-6-1007-2015
DOI: https://doi.org/10.2478/mipo-2024-0002 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 15 - 29
Submitted on: Feb 28, 2024
Accepted on: Jun 19, 2024
Published on: Jul 22, 2024
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Bibhuti Gogoi, Pallabi Basumatary, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.