References
- Ague, J.J. (1994). Mass transfer during barrovian meta-morphism of pelites. American Journal of Science, 294, 986-1057.
- Ague, J.J. (2003). Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. American Journal of Science, 303(9), 753-816.
- Ague, J.J. (2011). Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism. American Mineralogist, 96(2-3), 333-352.
- Ague, J.J., & Van Haren, J.L.M. (1996). Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Economic Geology, 91(7), 1169-1182.
- Alderton, D.H.M., Pearce, J.A. & Potts, PJ. (1980). Rare earth element mobility during granite alteration: evidence from southwest England. Earth and Planetary Science Letters, 49(1), 149-165.
- Baños, J.O., & Amouric, M. (1984). Biotite chloritization by interlayer brucitization as seen by HRTEM. American Mineralogist, 69(9–10), 869–871.
- Baumgartner, L.P., & Olsen, S.N. (1995). A least-squares approach to mass transport calculations using the isocon method. Economic Geology, 90(5), 1261–1270.
- Bucher, K., & Grapes, R. (2011). Petrogenesis of metamorphic rocks. Springer Berlin, Heidelberg.
- Centrella, S., Austrheim, H., & Putnis, A. (2015). Coupled mass transfer through a fluid phase and volume preservation during the hydration of granulite: An example from the Bergen Arcs, Norway. Lithos, 236–237, 245–255.
- Centrella, S., Putnis, A., Lanari, P., & Austrheim, H. (2018). Textural and chemical evolution of pyroxene during hydration and deformation: a consequence of retrograde metamorphism. Lithos, 296, 245-264.
- Centrella, S., Beaudoin, N.E., Derluyn, H., Motte, G., Hoareau, G., Lanari, P., Piccoli, F., Pécheyran, C. and Callot, J.P. (2021). Micro-scale chemical and physical patterns in an interface of hydrothermal dolomitization reveals the governing transport mechanisms in nature: Case of the Layens anticline, Pyrenees, France. Sedimentology, 68(2), 834–854.
- Condie, K.C., & Sinha, A.K. (1996). Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA. Journal of Metamorphic Geology, 14(2), 213–226.
- Dallmann, W.K., & Piepjohn, K. (2020). The structure of the Old Red Sandstone and the Svalbardian Orogenic Event (Ellesmerian Orogeny) in Svalbard. Norg. Geol. Unders. B, 15, 1–106.
- Durand, C., Oliot, E., Marquer, D., & Sizun, J.P. (2015). Chemical mass transfer in shear zones and metacarbonate xenoliths: a comparison of four mass balance approaches. European Journal of Mineralogy, 27(6), 731–754.
- Eggleton, R.A., & Banfield, J.F. (1985). The alteration of granitic biotite to chlorite. American Mineralogist, 70(9–10), 902–910.
- Faehnrich, K., Majka, J., Schneider, D., Mazur, S., Manecki, M., Ziemniak, G., Wala, V.T. & Strauss, J.V. (2020). Geochronological constraints on Caledonian strike– slip displacement in Svalbard, with implications for the evolution of the Arctic. Terra Nova, 32(4), 290-299.
- Ferry, J.M. (1979). Reaction mechanisms, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south central Maine, USA. Contributions to Mineralogy and Petrology, 68(2), 125–139.
- Freiberger, R., Hecht, L., Cuney, M., & Morteani, G. (2001). Secondary Ca–Al silicates in plutonic rocks: implications for their cooling history. Contributions to Mineralogy and Petrology, 141(4), 415-429.
- Gee, D.G., & Teben’kov, A.M. (2004). Svalbard: a fragment of the Laurentian margin. Geological Society, London, Memoirs, 30(1), 191-206.
- Goncalves, P., Marquer, D., Oliot, E., & Durand, C. (2013). Thermodynamic modeling and thermobarometry of metasomatized rocks. In D.E. Harlov & H. Austrheim (Eds.), Metasomatism and the Chemical Transformation of Rock (pp. 53-91). Springer, Berlin, Heidelberg.
- Grant, J.A. (1986). The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81(8), 1976–1982.
- Grant, J.A. (2005). Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30(17–18), 997–1004.
- Gresens, R.L. (1967). Composition-volume relationships of metasomatism. Chemical Geology, 2, 47-65.
- Harland, W. B., Scott, R. A., Aukland, K. A., & Snape, I. (1992). The Ny Friesland Orogen, Spitsbergen. Geological Magazine, 129, 679-708.
- Harland, W.B., Cutbill, J.L., Friend, P.F., Gobbett, D.J., Holliday, D.W., Maton, P.I., Parker, J.R. & Wallis, R.H. (1974). The Billefjorden Fault Zone, Spitsbergen: the long history of a major tectonic lineament. Norsk Polarinstitutt Tiddskrifter, 161, 1-72.
- Harlov, D.E., Wirth, R., & Hetherington, C.J. (2011). Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162(2), 329-348.
- Hey, M.H. (1954). A New Review of the Chlorites. Mineralogical Magazine, 30(224), 277-292.
- Janoušek, V., Farrow, C.M., & Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259.
- Kelemen, P.B., & Matter, J. (2008). In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences, 105(45), 17295-17300.
- Kogure, T., & Banfield, J.F. (2000). New insights into the mechanism for chloritization of biotite using polytype analysis. American Mineralogist, 85(9), 1202-1208.
- Lanari, P., Vho, A., Bovay, T., Airaghi, L. & Centrella, S. (2019). Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geological Society, London, Special Publications, 478(1), 39-63.
- Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G. & Schwartz, S., (2014). XMapTools: A MATLAB-based program for electron microprobe X-ray image processing and geothermobarometry. Computers and Geosciences, 62, 227-240.
- Majka, J., & Kośmińska, K. (2017). Magmatic and metamorphic events recorded within the Southwestern Basement Province of Svalbard. arktos, 3(1), 1-7.
- Merino, E. & Canals, À. (2011). Self-accelerating dolomite-for-calcite replacement: Self-organized dynamics of burial dolomitization and associated mineralization. American Journal of Science, 311(7), 573-607.
- McCann, A.J., & Dallmann, W.K. (1996). Reactivation history of the long-lived Billefjorden Fault Zone in north central Spitsbergen, Svalbard. Geological Magazine, 133(1), 63-84.
- Moore, J., Beinlich, A., Austrheim, H., & Putnis, A. (2019). Stress orientation-dependent reactions during metamorphism. Geology, 47(2), 151-154.
- Olsen, S.N. & Grant, J.A. (1991). Isocon analysis of migmatization in the Front Range, Colorado, USA. Journal of Metamorphic Geology, 9(2), 151–164.
- Osterberg, S.A., Morton, R.L., & Franklin, J.M. (1987). Hydrothermal alteration and physical volcanology of Archean rocks in the vicinity of the Headway Coulee massive sulfide occurrence, Onaman area, northwestern Ontario. Economic Geology, 82(6), 1505–1520.
- Parneix, J.C., Beaufort, D., Dudoignon, P., & Meunier, A. (1985). Biotite chloritization process in hydrothermally altered granites. Chemical Geology, 51(1-2), 89–101.
- Parry, W.T., & Downey, L.M. (1982). Geochemistry of Hydrothermal Chlorite Replacing Igneous Biotite. Clays and Clay Minerals, 30(2), 81–90.
- Plümper, O., & Putnis, A. (2009). The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions. Journal of Petrology, 50(5), 967–987.
- Potdevin, J.L., & Marquer, D. (1987). Quantitative Methods for the Estimation of Mass Transfers by Fluids in Deformed Metamorphic Rocks. Geodinamica Acta, 1(3), 193–206.
- Putnis, A. (2002). Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66(5), 689–708.
- Putnis, A. (2009). Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry, 70(1), 87–124.
- Putnis, A., & Putnis, C. V (2007). The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180(5), 1783–1786.
- Rüpke, L. H., Morgan, J. P., Hort, M., & Connolly, J. A. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223(1-2), 17-34.
- Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429(6991), 542–545.
- Tulloch, A.J. (1979). Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Contributions to Mineralogy and Petrology, 69(2), 105–117.
- Veblen, D., & Ferry, J.M. (1983). A TEM study of the biotitechlorite reaction and comparison with petrologic observations. American Mineralogist, 68, 1160–1168.
- Villa, I.M., & Williams, M.L. (2013). Geochronology of metasomatic events. In D.E. Harlov & H. Austrheim (Eds.), Metasomatism and the Chemical Transformation of Rock (pp. 171–202). Springer, Berlin, Heidelberg.
- Whitney, D., & Evans, B. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
- Wilamowski, A. (2002). Chloritization and polytypism of biotite in the Łomnica granite, Karkonosze Massif, Sudetes, Poland: Stable isotope evidence. Chemical Geology, 182(2–4), 529–547.
- Yardley, B.W.D., Rhede, D. & Heinrich, W. (2014). Rates of retrograde metamorphism and their implications for the rheology of the crust: an experimental study. Journal of Petrology, 55(3), 623–641.
- Yuguchi, T., Sasao, E., Ishibashi, M., & Nishiyama, T. (2015). Hydrothermal chloritization processes from biotite in the Toki granite, Central Japan: Temporal variations of the compositions of hydrothermal fluids associated with chloritization. American Mineralogist, 100(5–6), 1134–1152.
- Xiao, B. and Chen, H. (2020). Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chemical Geology, 543, 119604.