Have a personal or library account? Click to login
Experimental immobilization of Zn, Pb and Cd by additives to highly contaminated soils Cover

Experimental immobilization of Zn, Pb and Cd by additives to highly contaminated soils

Open Access
|Dec 2022

References

  1. Bajda, T., Marchlewski, T., & Manecki, M. (2011). Pyromorphite formation from montmorillonite adsorbed lead. Mineralogia, 42(2-3), 75-91. DOI: 10.2478/v10002-011-0008-5.10.2478/v10002-011-0008-5
  2. Baran, S., & Faber, A. (1976). Wpływ zanieczyszczeń emitowanych przez huty cynku na zawartość ołowiu i cynku w glebie i w roślinach. Zeszyty Problemowe Postępów Nauk Rolniczych, 179, 605-612. [In Polish].
  3. Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in smelter contaminated soils. Environmental Pollution, 127(1), 73-82. DOI: 10.1016/S0269-7491(03)00250-1.10.1016/S0269-7491(03)00250-114553997
  4. Bielińska, E. J., Mocek-Płóciniak A. (2010). Impact of ecochemical soil conditions on selected heavy metals content in garden allotment vegetables. Polish Journal of Environmental Studies, 19(5). 895-900.
  5. Břendová, K., Tlustoš, P., & Száková, J. (2015). Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant, Soil and Environment, 61(7), 303-308. DOI: 10.17221/181/2015-pse.10.17221/181/2015-PSE
  6. Brown, S., Christensen, B., Lombi, E., McLaughlin, M., Mc-Grath, S., Colpaert, J., & Vangrosnveld, J. (2005). An inter-laboratory study to test the ability of amendments to reduce bioavailability of Cd, Pb and Zn in situ. Environmental Pollution, 138(1), 34-45. DOI: 10.1016/j. envpol.2005.02.020.10.1016/j.envpol.2005.02.020
  7. Cui, H., Bao, B., Cao, Y., Zhang, S., Shi, J., Zhou, J., Zhou, J. (2022). Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations. Environmental Pollution, 292, A, 118323. DOI: 10.1016/j. envpol.2021.118323.10.1016/j.envpol.2021.118323
  8. Chen, M., & Ma L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491-499. DOI: 10.2136/sssaj2001.652491x.10.2136/sssaj2001.652491x
  9. Debiec, K., Rzepa, G., Bajda, T., Zych, L., Krzysztoforski, J., Sklodowska, A., & Drewniak, L. (2017). The influence of thermal treatment on bioweathering and arsenic sorption capacity of a natural iron (oxyhydr)oxide-based adsorbent. Chemosphere, 188, 99-109. DOI: 10.1016/j. chemosphere.2017.08.142.10.1016/j.chemosphere.2017.08.142
  10. Diatta, J., Wirth, S., & Chudzińska, E. (2010). Application of the partition coefficient for assessing heavy metals mobility within the Miasteczko Slaskie zinc smelter impact zone (Poland). Ecological Chemistry and Engineering A, 17(1-2), 1203-1212.
  11. Du, J., Zhou, A., Lin, X., Bu, Y. (2022). Adsorption mechanism of Pb2+ in montmorillonite nanopore under various temperatures and concentrations. Environmental Research, 209, 112817. DOI: 10.1016/j.envres.2022.112817.10.1016/j.envres.2022.11281735092742
  12. Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl–mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75(7), 1858-1868. DOI: 10.1016/j.gca.2011.01.021.10.1016/j.gca.2011.01.021
  13. Gerold-Śmietańska, I. (2007). Kierunki przemian fitocenoz borowych obserwowanych na stałych powierzchniach badawczych w okolicach huty cynku w Miasteczku Śląskim. Ph.D. thesis, University of Silesia in Katowice, Poland [In Polish].
  14. Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and redmud. Environmental Pollution, 142(3), 530-539. DOI: 10.1016/j.envpol.2005.10.017.10.1016/j.envpol.2005.10.01716321462
  15. Grobelak, A., Kacprzak, M., Grosser, A., & Napora, A. (2013). Chemophytostabilisation of soil contaminated with Cadmium, Lead and Zinc. Annual Set The Environment Protection, 15, 1982-2002. [In Polish with English summary].
  16. Grobelak, A., & Napora, A. (2015). The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE, 10(6), e0129538. DOI: 10.1371/journal.pone.0129538.10.1371/journal.pone.0129538448268126115341
  17. Heiri, O., Lotter, A.F., & Lemcke, G. (2001). Loss of ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101-110. DOI: 10.1023/A:1008119611481.10.1023/A:1008119611481
  18. Hettiarachchi, G. M., & Pierzynski, G. M. (2004), Soil lead bio-availability and in situ remediation of lead-contaminated soils: a review. Environmental Progress, 23(1), 78-93. DOI: 10.1002/ep.10004.10.1002/ep.10004
  19. Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70(11), 2009-2015. DOI: 10.1016/j.chemo-sphere.2007.09.025.10.1016/j.chemosphere.2007.09.025
  20. Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & van der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment, 178, 21-28. DOI: 10.1016/0048-9697(95)04793-X.10.1016/0048-9697(95)04793-X
  21. Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9-10), 1299-1396. DOI: 10.1080/00103620009370514.10.1080/00103620009370514
  22. Houben, D., Pircar, J., Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87-94. DOI: 10.1016/j.gexplo.2011.10.004.10.1016/j.gexplo.2011.10.004
  23. Iakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., & Sillanpää, M. (2015). Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40. DOI: 10.1016/j.ecoleng.2015.04.046.10.1016/j.ecoleng.2015.04.046
  24. Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. CRC Press.10.1201/9781420039900
  25. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace Elements from Soil to Human. Springer.10.1007/978-3-540-32714-1
  26. Kaczmarek, K., Świsłowski, P., & Rajfur, M. (2017). The active biomonitoring using mosses as bioindicators near Miasteczko Slaskie. Proceedings of ECOpole, 11(2), 507-516. DOI: 10.2429/proc.2017.11(2)055 [In Polish with English summary].
  27. Kaczorek, D., Brümmer, G. W., & Sommer, M. (2009). Content and Binding Forms of Heavy Metals, Aluminium and Phosphorous in Bog Iron Ores from Poland. Journal of Environment Quality, 38(3), 1109-1119. DOI: 10.2134/jeq2008.0125.10.2134/jeq2008.012519398508
  28. Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. DOI: 10.1016/j.gexplo.2016.11.021.10.1016/j.gexplo.2016.11.021
  29. Kicińska, A. (2011). Occurrence and mobility of zinc, lead and cadmium in soils polluted by mining and metallurgical industries. Ochrona Środowiska i Zasobów Naturalnych, 42, 152-162 [In Polish with English summary].
  30. Kicińska, A. (2019). Environmental risk related to the presence and mobility of As, Cd and Tl in soil in the vicinity of a metallurgical plant – long-term observations. Chemosphere, 236, 124308. DOI: 10.1016/j.chemo-sphere.2019.07.039.10.1016/j.chemosphere.2019.07.039
  31. Kicińska, A. (2020). Lead and Zinc in Soils Around a Zinc-Works – Presence, Mobility and Environmental Risk. Journal of Ecological Engineering, 21(4), 185-198. DOI: 10.12911/22998993/119815.10.12911/22998993/119815
  32. Kicińska A., Wikar. J. (2021). The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L. Scientific Reports, 11, 4072. DOI: 10.1038/s41598-021-83600-7.10.1038/s41598-021-83600-7789300733603123
  33. Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2021). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), 1-14. DOI: 10.1111/ejss.13203.10.1111/ejss.13203
  34. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management, 28(1), 215-225. DOI: 10.1016/j.wasman.2006.12.012.10.1016/j.wasman.2006.12.01217320367
  35. Kumpiene, J., Antelo, J., Bränvall, E., Carabante, I., Ek, K., Komárek, M., Söderberg, C., & Wårell L. (2019). In situ chemical stabilization of trace element-contaminated soil – Field demonstrations and barriers to transition from laboratory to the field – A review. Applied Geochemistry, 100, 335-351. DOI: 10.1016/j.apgeochem.2018.12.003.10.1016/j.apgeochem.2018.12.003
  36. Lahori, A. H., Zhang, Z. Guo, Z., Mahar, A., Li, R., Awasthi, M. K., Sial, T. A., Kumbhar, F., Wang, P., Shen, F., Zhao, J., Huang, H. (2017a). Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, 145, 313-323. DOI: 10.1016/j.ecoenv.2017.07.049.10.1016/j.ecoenv.2017.07.04928756252
  37. Lahori, A. H., Guo, Z. Y., Zhang, Z. Q., Li, R. H., Mahar, A., Awasthi, M. K., Shen, F., Sial, T. A., Kumbhar, F., Wang, P., Jiang, S. C. (2017b). Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere, 27(6), 991–1014. DOI: 10.1016/S1002-0160(17)60490-9.10.1016/S1002-0160(17)60490-9
  38. Lahori, A.H., Mierzwa-Hersztek, M., Rashid, M., Kalhoro, S. A., Memon, M., Naheed, Z., Ahmed, M., Zhang, Z. (2020). Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils. Journal of Environmental Sciences, 87, 299-309. DOI: 10.1016/j. jes.2019.07.003.10.1016/j.jes.2019.07.003
  39. Lee, S. H., Lee, J. S., Choi, Y. J. & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069-1075. DOI: 10.1016/j.chemosphere.2009.08.056.10.1016/j.chemosphere.2009.08.05619786291
  40. Liu, X., Hicher, P., Muresan, B., Saiyouri, N., & Hicher, P-Y. (2016). Heavy metal retention properties of kaolin and bentonite in a wide range of concentration and different pH conditions. Applied Clay Science, 119, 365-374. DOI: 10.1016/j.clay.2015.09.021.10.1016/j.clay.2015.09.021
  41. Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science & Technology, 27(9), 1803-1810. DOI: 10.1021/es00046a007.10.1021/es00046a007
  42. Mains, D., Craw, D., Rufaut, C. G. & Smith, C. M. S. (2006). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163-183. DOI: 10.1080/15226510600742559.10.1080/1522651060074255916924964
  43. Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178-181. DOI: 10.1007/s10311-005-0030-1.10.1007/s10311-005-0030-1
  44. Manouchehri, N., Besancon S., & Bermond A. (2006). Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559(1), 105-112. DOI: 10.1016/j.aca.2005.11.050.10.1016/j.aca.2005.11.050
  45. Manouchehri, N., & Bermond, A. (2009). EDTA in soil science: A review of its application in soil trace metal studies. Terrestrial and Aquatic Environmental Toxicology, 3(1), 1-15.
  46. Matusik, J., Bajda, T., & Manecki, M., (2008). Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 152(3), 1332-1339, DOI: 10.1016/j.jhazmat.2007.08.010.10.1016/j.jhazmat.2007.08.01017868991
  47. Matusik, J., Bajda, T., & Manecki, M. (2012). Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology, Geophysics and Environmental Protection, 38(4), 427-438. DOI: 10.7494/geol.2012.38.4.427.10.7494/geol.2012.38.4.427
  48. McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management, 4449-8.
  49. Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283. DOI: 10.1289/ehp.10608.10.1289/ehp.10608226502518335091
  50. Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6(3), 121-133. DOI: 10.1007/s10311-007-0133-y.10.1007/s10311-007-0133-y
  51. Mignardi, S., Corami, A., Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86(4), 354-360. DOI: 10.1016/j. chemosphere.2011.09.050.10.1016/j.chemosphere.2011.09.050
  52. Mitzia, K., Vítková, M., & Komárek M. (2020). Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: a temporal study of solid phase geochemistry under changing soil conditions. Chemosphere, 242, 125248. DOI: 10.1016/j.chemo-sphere.2019.125248.10.1016/j.chemosphere.2019.125248
  53. Mohammed-Azizi, F., Dib, S., & Boufatit, M. (2013). Removal of heavy metals from aqueous solutions by Algerian bentonite. Desalination and Water Treatment, 51(22-24), 4447-4458. DOI: 10.1080/19443994.2013.770241.10.1080/19443994.2013.770241
  54. Nadgórska-Socha, A., Kandziora-Ciupa, M., Ciepał, R., Musialik, D., & Barczyk, G. (2013). The activity of selected soil enzymes, and soil contamination with zinc, cadmium and lead in the vicinity of the zinc smelter “Miasteczko Slaskie”. Ecological Chemistry and Engineering A, 20(1), 123-131. DOI: 10.2428/ecea.2013.20(01)014.10.1007/s11356-012-1461-4
  55. Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0.10.1016/S0043-1354(01)00130-012230182
  56. Nejad, Z. D., Jung, M. C., Kim, K-H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40, 927-953. DOI: 10.1007/s10653-017-9964-z.10.1007/s10653-017-9964-z28447234
  57. Nkutha, C.S., Naidoo, E.B., & Shooto, N.D. (2021). Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. South African Journal of Chemical Engineering, 36, 43-57. DOI: 10.1016/j.sajce.2021.01.001.10.1016/j.sajce.2021.01.001
  58. Pająk, M., & Jasik, M. (2010). The level of Zn, Cd and Pb accumulation in top layer of forest soil in the neighbour-hood of metallurgic compex „Miasteczko Śląskie”. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 137, 112-122 [In Polish with English summary].
  59. Pieczara G., & Rzepa G. (2016). The effect of Si content on ferrihydrite sorption capacity for Pb(II), Cu(II), Cr(VI), and P(V). Environmental Engineering and Management Journal, 15(9), 2095-2107. DOI: 10.30638/eemj.2016.226.10.30638/eemj.2016.226
  60. Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), 217-226. DOI: 10.1016/j.aca.2003.10.047.10.1016/j.aca.2003.10.047
  61. Raicevic, S., Kaluđjerović-Radoičić, T., & Zouboulis, A. I. (2005). In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. Journal of Hazardous Materials, 117(1), 41-53. DOI: 10.1016/j.jhazmat.2004.07.024.10.1016/j.jhazmat.2004.07.02415621352
  62. Rozpondek, R., Rozpondek, K., & Kacprzak, M. (2017). Evaluation of contamination od Zn-Pb industry degraded areas using spatial information. Ecological Engineering, 18(3), 106-113. DOI: 10.12912/23920629/70265 [In Polish with English summary].10.12912/23920629/70265
  63. Rzepa, G., Bajda, T., & Ratajczak, T. (2009). Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials, 162(2-3), 1007-1013. DOI: 10.1016/j. jhazmat.2008.05.135.10.1016/j.jhazmat.2008.05.135
  64. Rzepa, G., Bajda, T., Gaweł, A., Dębiec, K., & Drewniak, Ł. (2016). Mineral transformations and textural evolution during roasting of bog iron ores. Journal of Thermal Analysis and Calorimetry, 123(1), 615-630. DOI: 10.1007/s10973-015-4925-1.10.1007/s10973-015-4925-1
  65. Santoro, A., Held, A., Linsinger, P. J. T., Pérez, A., & Ricci, M. (2017). Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends in Analytical Chemistry, 89, 34-40. DOI: 10.1016/j.trac.2017.01.010.10.1016/j.trac.2017.01.010538065128413235
  66. Shi, Q., Zhang, S., Ge, J., Wei, J., Christodoulatos, C., Korfiatis, G. P., Meng, X. (2020). Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation. Water Research, 179, 115853. DOI: 10.1016/j.watres.2020.115853.10.1016/j.watres.2020.11585332388052
  67. Sierka, E., Palowski, B., & Kimsa, T. (2001). Zinc in soil around non-ferrous metals smelter. Archiwum Ochrony Środowiska, 27(2), 169-173.
  68. Sierka, E., Palowski, B., & Kimsa, T. (2002). Contamination of soil around non-ferrous metals smelter. Lead and cadmium. Chemia i Inżynieria Ekologiczna, 9, 893-896.
  69. Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27(4), 289-300. DOI: 10.1007/s10653-004-5977-5.10.1007/s10653-004-5977-516027964
  70. Smieja-Król, B., Smieja, A., & Fiałkiewicz-Kozieł, B. (2017). Seasonal variations in trace metals distribution in degraded peatlands in Miasteczko Śl. (S Poland). Mineralogia – Special Papers, 47, 84.
  71. Song, Y., Zhao, Z., Li, J., You, Y., Ma, X., Li, J., & Cheng, X. (2021). Preparation of silicon-doped ferrihydrite for adsorption of lead and cadmium: Property and mechanism. Chinese Chemistry Letters, 32(10), 3169-3174. DOI: 10.1016/j.cclet.2021.03.001.10.1016/j.cclet.2021.03.001
  72. Sun, W., Zhang, S., & Su, C. (2018). Impact of biochar on the bioremediation and phytoremediation of heavy metal(loid)s in soil. In N. Shiomi (Ed.) Advances in Bioremediation and Phytoremediation, IntechOpen. DOI: 10.5772/intechopen.70349.10.5772/intechopen.70349
  73. Szrek, D., Bajda, T., & Manecki, M. (2011). A comparative study of the most effective amendment for Pb, Zn and Cd immobilization in contaminated soils. Journal of Environmental Science and Health A, 46(13), 1491-1502. DOI: 10.1080/10934529.2011.609082.10.1080/10934529.2011.60908221961559
  74. Talaat, H. A., El Defrawy, N. M., Abulnour, A. G., Hani, H. A., & Tawfik, A. (2011). Evaluation of Heavy Metals Removal Using Some Egyptian Clays. International Proceedings of Chemical, Biological and Environmental Engineering, 6, 37-42.
  75. Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299-309. DOI: 10.1016/j. envint.2015.12.017.10.1016/j.envint.2015.12.017
  76. Uchimiya, M., Bannon, D. I., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2012). Lead retention by broiler litter bio-chars in small arms range soil: Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 60(20), 5035-5044. DOI: 10.1021/jf300825n.10.1021/jf300825n22548418
  77. Usman, A. R. A., Kuzyakov, Y., Lorenz, K., Stahr, K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. Journal of Plant Nutrition and Soil Science, 169(2), 205-212. DOI: 10.1002/jpln.200421685.10.1002/jpln.200421685
  78. Vítková, M., Rákosová, S., Michálkova, Z., & Komárek, M. (2016). Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. Journal of Environmental Management, 186(2), 268-276. DOI: 10.1016/j.jenvman.2016.06.003.10.1016/j.jenvman.2016.06.00327292579
  79. Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2013). Effect of Quick Lime and Dolomite Application on Mobility of Elements (Cd, Zn, Pb, As, Fe, and Mn) in Contaminated Soils. Polish Journal of Environmental Studies, 22(2), 577-589.
  80. Vondráčková, S., Hejcman, M., Tlustoš, P., & Száková, J. (2017). Effect of rock phosphate and superphosphate application on mobility of elements (Cd, Zn, Pb, As, Fe, Mn) in contaminated soils. Environmental Engineering and Management Journal, 16(12), 2901-2910. DOI: 10.30638/eemj.2017.299.10.30638/eemj.2017.299
  81. Vrînceanu, N. O., Motelică, D. M., Dumitru, M., Calciu, I., Tănase, V., & Preda, M. (2019). Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena, 176, 336-342. DOI: 10.1016/j.catena.2019.01.015.10.1016/j.catena.2019.01.015
  82. Wang, Y., Li, F., Song, J., Xiao, R., Luo, L., Yang, Z., & Chai, L. (2018). Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud. Environmental Geochemistry and Health, 40(2), 2143-2153. DOI: 10.1007/s10653-018-0089-9.10.1007/s10653-018-0089-929651760
  83. Widera, S. (1980). Contamination of the soil and assimilative organs of the pine-tree in various distance from the surface of emission. Archiwum Ochrony Środowiska, 3-4, 141-146 [In Polish with English summary].
  84. Wołowiec, M., Tuchowska, M., Kudła, P., & Bajda, T. (2019). Synthesis and characterization of cadmium chlorapatite Cd5(PO4)3Cl, Mineralogia, 50(1-4), 3-12. DOI: 10.2478/mipo-2019-0001.10.2478/mipo-2019-0001
  85. Xiu, W., Yu, X., Guo, H., Yuan, W., Ke T., Liu, G., Tao, J., Hou, W., & Dong, H., (2019). Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals. Chemosphere, 225, 755-764. DOI: 10.1016/j. chemosphere.2019.02.098.10.1016/j.chemosphere.2019.02.098
  86. Xu, P., Sun, C-X., Ye, X-Z., Xiao, W-D., Zhang, Q., Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132, 94-100. DOI: 10.1016/j.ecoenv.2016.05.031.10.1016/j.ecoenv.2016.05.03127285283
  87. Xu D-M., Fu R-B., Wang J-X., Shi Y-X., & Guo X-P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated valuation methods – A critical review. Journal of Cleaner Production, 321, 128730. DOI: 10.1016/j.jclepro.2021.128730.10.1016/j.jclepro.2021.128730
  88. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W., & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884-891. DOI: 10.1016/j. chemosphere.2017.06.040.10.1016/j.chemosphere.2017.06.040
  89. Zai, W., Zhang, X., Su, Y., Man, H. C., Li, G., & Lian, J. (2020). Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surface and Coatings Technology, 397, 125919. DOI: 10.1016/j.surfcoat.2020.125919.10.1016/j.surfcoat.2020.125919
  90. Zhang, P., Ryan, J.A., & Bryndzia, L.T. (1997). Pyromorphite Formation from Goethite Adsorbed Lead. Environmental Science & Technology, 31(9), 2673-2678, DOI: 10.1021/es970087x.10.1021/es970087x
  91. Zhang, Y., Zhang, H., Wang, M., Zhang, Z., Marhaba, T., Sun, C. & Zhang, W. (2019). In situ immobilization of heavy metals in contaminated sediments by composite additives of hydroxyapatite and oxides. Environmental Earth Sciences, 78, 94. DOI: 10.1007/s12665-019-8085-7.10.1007/s12665-019-8085-7
  92. Zhang, D., Ding, A., Li, T., Wu, X., Liu, Y., Naidu, R. (2021). Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. Journal of Soils and Sediments, 21, 2262-2272. DOI: 10.1007/s11368-021-02928-9.10.1007/s11368-021-02928-9
  93. Zhang, Y., Wang, J., Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284. DOI: 10.1016/j.catena.2021.105284.10.1016/j.catena.2021.105284
  94. Zhu, X., Li, J., Luo, J., Jin, Y., & Zheng, D. (2016). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers, 70, 200-208. DOI: 10.1016/j.jtice.2016.10.049.10.1016/j.jtice.2016.10.049
DOI: https://doi.org/10.2478/mipo-2022-0006 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 67 - 81
Submitted on: May 10, 2022
|
Accepted on: Nov 29, 2022
|
Published on: Dec 24, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Justyna Hałabuza, Grzegorz Rzepa, Maciej Manecki, Justyna Białek, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.