Have a personal or library account? Click to login
Mineralogical and geochemical evidence for two-stage silicification of serpentinized peridotites from the Szklary Massif (NE Bohemian Massif) Cover

Mineralogical and geochemical evidence for two-stage silicification of serpentinized peridotites from the Szklary Massif (NE Bohemian Massif)

Open Access
|Jun 2022

References

  1. Aftabi, A., & Zarrinkoub, M., H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu–Au ore exploration in metaophiolites. Lithos, 156–159, 186–203. DOI: 10.1016/j.lithos.2012.11.006.10.1016/j.lithos.2012.11.006
  2. Aiglsperger, T., Proenza, J. A., Lewis, J. F., Labrador, M., Svojtka, M., Rojas-Purón, A., Longo, F., & Ďurišová, J. (2016). Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews, 73, 127–147. DOI: 10.1016/j.oregeorev.2015.10.010.10.1016/j.oregeorev.2015.10.010
  3. Aleksandrowski, P., & Mazur, S. (2002). Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. Geological Society, London, Special Publications, 201(1), 237–277. DOI: 10.1144/GSL.SP.2002.201.01.12.10.1144/GSL.SP.2002.201.01.12
  4. Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu- Zn deposit, Quebec Appalachians. Economic Geology, 88(1), 123–138. DOI: 10.2113/gsecongeo.88.1.123.10.2113/gsecongeo.88.1.123
  5. Awdankiewicz, M., Kryza, R., Turniak, K., Ovtcharova, M., & Schaltegger, U. (2021). The Central Sudetic Ophiolite (European Variscan Belt): Precise U-Pb zircon dating and geotectonic implications. Geological Magazine, 158(3), 555–566. DOI: 10.1017/S0016756820000722.10.1017/S0016756820000722
  6. Badura, J., & Dziemiańczuk, E. (1981). Szczegółowa mapa geologiczna sudetów 1:25 000, ark. Ząbkowice Śląskie. Wydawnictwo Geologiczne, Warszawa.
  7. Boskabadi, A., Pitcairn, I. K., Leybourne, M. I., Teagle, D. A. H., Cooper, M. J., Hadizadeh, H., Nasiri Bezenjani, R., & Monazzami Bagherzadeh, R. (2020). Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran. Lithos, 352–353, 105307. DOI: 10.1016/j.lithos.2019.105307.10.1016/j.lithos.2019.105307
  8. Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123–128. DOI: 10.2113/gselements.9.2.123.10.2113/gselements.9.2.123
  9. Čermáková, Z., Hradil, D., Bezdička, P., & Hradilová, J. (2017). New data on “kerolite–pimelite” series and the colouring agent of Szklary chrysoprase, Poland. Physics and Chemistry of Minerals, 44(3), 193–202. DOI: 10.1007/s00269-016-0848-z.10.1007/s00269-016-0848-z
  10. Coleman, R. G. (1971). Petrologic and Geophysical Nature of Serpentinites. GSA Bulletin, 82(4), 897–918. DOI: 10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2.10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2
  11. Dill, H. G. (2017). Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth-Science Reviews, 165, 1–58. DOI: 10.1016/j.earscirev.2016.12.004.10.1016/j.earscirev.2016.12.004
  12. Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90(6), 1841–1856. DOI: 10.2113/gsecongeo.90.6.1841.10.2113/gsecongeo.90.6.1841
  13. Dubińska, E. (1995). Zróżnicowanie materiału wyjściowego zwietrzeliny a rozwój laterytowych rud niklu. Przewodnik LXVI Zjazdu Polskiego Towarzystwa Geologicznego, 207–212.
  14. Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., & Kulicki, C. (2004). U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203(3–4), 183–203. DOI: 10.1016/j.chemgeo.2003.10.005.10.1016/j.chemgeo.2003.10.005
  15. Dubińska, E., & Gunia, P. (1997). The Sudetic ophiolite: current view on its geodynamic model. Geological Quarterly, 41, 1–20.
  16. Dubińska, E., Sakharov, B. A., Kaproń, G., Bylina, P., & Kozubowski, J. A. (2000). Layer silicates from Szklary (Lower Silesia): from ocean floor metamorhism to continental chemical weathering. Geologia Sudetica, 33(2), 85–105.
  17. Duparc, L., Molly, E., & Borloz, A. (1927). Sur la Birbiriten une nouvelle roche. Compte Rendu Des Séances de La Société de Physique et D’Histoire Naturelle de Genève, 44, 137–139.
  18. Elias, M. (2002). Nickel laterite deposits – geological overview, resources and exploitation. Centre for Ore Deposit Research, University of Tasmania, Hobart, Special Publication, 4, 205–220.
  19. Flörke, O.W., Graetsch, H., Martin, B., Röller, K., Wirth, R. (1991). Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch Mineralogie, Abhandlungen, 163, 19–42.
  20. Franke, W., & Żelaźniewicz, A. (2000). The eastern termination of the Variscides: terrane correlation and kinematic evolution. Geological Society, London, Special Publications, 179(1), 63–86. DOI: 10.1144/GSL.SP.2000.179.01.06.10.1144/GSL.SP.2000.179.01.06
  21. Frelinger, S. N., Ledvina, M. D., Kyle, J. R., & Zhao, D. (2015). Scanning electron microscopy cathodoluminescence of quartz: Principles, techniques and applications in ore geology. Ore Geology Reviews, 65, 840–852. DOI: 10.1016/j.oregeorev.2014.10.008.10.1016/j.oregeorev.2014.10.008
  22. Freyssinet, PH., Butt, C. R. M., Morris, R. C., & Piantone, P. (2005). Ore-Forming Processes Related to Lateritic Weathering. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Eds.), One Hundredth Anniversary Volume (pp. 681–722). Society of Economic Geologists. DOI: 10.5382/AV100.21.10.5382/AV100.21
  23. Frost, B.R., & Frost, C.D. (2014). Essentials of Igneous and Metamorphic Petrology. Cambridge University Press. New York, USA.
  24. Gahlan, H. A., Azer, M. K., Asimow, P. D., & Al-Kahtany, K. M. (2020). Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia. Lithos, 372–373, 105679. DOI: 10.1016/J.LITHOS.2020.105679.10.1016/j.lithos.2020.105679
  25. Gibson, H. L., Watkinson, D. H., & Comba, C. D. A. (1983). Silicification; hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology, 78(5), 954–971. DOI: 10.2113/gsecongeo.78.5.954.10.2113/gsecongeo.78.5.954
  26. Golightly, J. P. (2010). Progress in Understanding the Evolution of Nickel Laterites. In R. J. Goldfarb, E. E. Marsh & T. Monecke (Eds.), The Challenge of Finding New Mineral Resources, Global Metallogeny, Innovative Exploration, and New Discoveries (pp. 451-485). Society of Economic Geologists. DOI: 10.5382/SP.15.2.10.5382/SP.15.2
  27. Götte, T., Pettke, T., Ramseyer, K., Koch-Muller, M., & Mullis, J. (2011). Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. American Mineralogist, 96(5–6), 802–813. DOI: 10.2138/am.2011.3639.10.2138/am.2011.3639
  28. Götze, J. (2009). Chemistry, textures and physical properties of quartz — geological interpretation and technical application. Mineralogical Magazine, 73(4), 645–671. DOI: 10.1180/minmag.2009.073.4.645.10.1180/minmag.2009.073.4.645
  29. Gunia, P. (2000). The petrology and geochemistry of mantle- derived basic and ultrabasic rocks from the Szklary Massif in the Fore-Sudetic Block (SW Poland). Geologia Sudetica, 33(2), 71–83.
  30. Gunia, P. (2007). Plagiogranites from the Szklary serpentinite massif, a component of the Sudetic ophiolite. Granitoids in Poland, AM Monograph, 1, 287–295.
  31. Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3–4), 303–313. DOI: 10.1007/BF00196366.10.1007/BF00196366
  32. Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, & Sato, T. (2021). Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach. Resource Geology, 71(3), 255–282. DOI: 10.1111/rge.12266.10.1111/rge.12266
  33. Jedrysek, M. O., & Halas, S. (1990). The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova, 2(2), 154–159. DOI: 10.1111/j.1365-3121.1990.tb00057.x.10.1111/j.1365-3121.1990.tb00057.x
  34. Kempe, U., Möckel, R., Graupner, T., Kynicky, & Dombon, E. (2015). The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602–625. DOI: 10.1016/j.oregeorev.2014.05.003.10.1016/j.oregeorev.2014.05.003
  35. Klein, F., & Garrido, C. J. (2011). Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126(3–4), 147–160. DOI: 10.1016/j.lithos.2011.07.020.10.1016/j.lithos.2011.07.020
  36. Kryza, R., & Pin, C. (2010). The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research, 17(2–3), 292–305. DOI: 10.1016/j.gr.2009.11.001.10.1016/j.gr.2009.11.001
  37. Lacinska, A. M., & Styles, M. T. (2013). Silicified serpentinite – A residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates. Geological Magazine, 150(3), 385–395. DOI: 10.1017/S0016756812000325.10.1017/S0016756812000325
  38. Mazur, S., Aleksandrowski, P., Kryza, R., & Oberc-Dziedzic, T. (2006). The Variscan Orogen in Poland. Geological Quarterly, 50(1), 89 – 115.
  39. Mazur, S., & Puziewicz, J. (1995). Mylonity strefy Niemczy. Annales Societatis Geologorum Poloniae, 64, 23–52.
  40. Mikulski, S. (2014). Silnie krzemionkowy zażelaziony metasomatyt (birbiryt) ze strefy zwietrzenia masywu serpentynitowego w złożu niklu w Szklarach na Dolnym Śląsku. Biuletyn Państwowego Instytutu Geologicznego, 458, 61–72.10.5604/08676143.1113234
  41. Moctar, D. O., Moukadiri, A., Boushaba, A., Lemine, S. O. M., & Dubois, M. (2019). Petrographical and Geochemical Characteristics of the Mauritanides Belts’ Birbirites. In D. Doronozo, E. Schingaro, J. S. Armstrong-Altrin & B. Zoheir (Eds.), Petrogenesis and Exploration of the Earth’s Interior (pp. 55–57). Springer Nature, Switzerland. DOI: 10.1007/978-3-030-01575-6_13.10.1007/978-3-030-01575-6_13
  42. Molly, E. W. (1959). Platinum deposits of Ethiopia. Economic Geology, 54(3), 467–477. DOI: 10.2113/gsecongeo.54.3.467.10.2113/gsecongeo.54.3.467
  43. Niśkiewicz, J. (1967). Budowa geologiczna Masywu Szklar. Rocznik Polskiego Towarzystwa Geologicznego, 37, 387–415.
  44. Niśkiewicz, J. (2000). Pokrywa zwietrzelinowa masywu Szklar i jej niklonośność (The Szklary Massif nickel-bearing weathering cover). Geologia Sudetica, 33(2), 107–130.
  45. Pieczka, A., Cooper, M. A., & Hawthorne, F. C. (2019). Lepageite, Mn32+(Fe73+Fe42+) O3[Sb53+As83+O34], a new arsenite-antimonite mineral from the Szklary pegmatite, Lower Silesia, Poland. American Mineralogist, 104(7), 1043–1050. DOI: 10.2138/am-2019-6903.10.2138/am-2019-6903
  46. Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J., & Nejbert, K. (2015). Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic Pegmatites, Fieldtrip Guidebook (pp. 73–103).
  47. Pietranik, A., Storey, C., & Kierczak, J. (2013). The Niemcza diorites and monzodiorites (Sudetes, SW Poland): A record of changing geotectonic setting at ca. 340 Ma. Geological Quarterly, 57(2), 325–334. DOI: 10.7306/gq.1084.10.7306/gq.1084
  48. Rusk, B. (2012). Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In J. Götze & R. Möckel (Eds.), Quartz: Deposits, Mineralogy and Analytics (pp. 307–329). Springer. DOI: 10.1007/978-3-642-22161-3_14.10.1007/978-3-642-22161-3_14
  49. Salvi, S., Fontan, F., Monchoux, P, Williams-Jones, A. E., & Moine, B. (2000). Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Economic Geology, 95(3), 559–576. DOI: 10.2113/gsecongeo.95.3.559.10.2113/gsecongeo.95.3.559
  50. Schaltegger, U. (2007). Hydrothermal Zircon. Elements, 3(1), 51–79. DOI: 10.2113/gselements.3.1.51.10.2113/gselements.3.1.51
  51. Sherman, G. D., Kanehiro, Y., & Matsu Saka, Y. (1953). Role of dehydration in development of the laterite crust. Pacific Science, 7, 438–446.
  52. Spiridonov, E. M. (1991). Listvenites and zodites. International Geology Review, 33(4), 397–407. DOI: 10.1080/00206819109465698.10.1080/00206819109465698
  53. Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.-C., Teitler, Y., & Karpoff, A. M. (2019). The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. Journal of Geochemical Exploration, 197, 93–113. DOI: 10.1016/j.gexplo.2018.11.017.10.1016/j.gexplo.2018.11.017
  54. Wiewióra, A. & Szpila, K. (1975). Nickel Containing Regularly Interstratified Chlorite-Saponite from Szklary, Lower Silesia, Poland. Clays and Clay Minerals, 23, 91–96. DOI: 10.1346/CCMN.1975.023020210.1346/CCMN.1975.0230202
DOI: https://doi.org/10.2478/mipo-2022-0003 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 20 - 35
Submitted on: Jan 25, 2022
Accepted on: May 17, 2022
Published on: Jun 15, 2022
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Błażej Cieślik, Jakub Kierczak, Anna Pietranik, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.