Have a personal or library account? Click to login
Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland Cover

Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland

Open Access
|Feb 2022

References

  1. Bartoli, O., Acosta-Vigil, A., Ferrero, S., & Cesare, B. (2016). Granitoid magmas preserved as melt inclusions in high-grade metamorphic rock. American Mineralogist, 101(7), 1543-1559. https://doi.org/10.2138/am-2016-5541CCBYNCND10.2138/am-2016-5541CCBYNCND
  2. Bufe, N. A., Holness, M. B., & Humphreys, M. C. (2014). Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion. Journal of Petrology, 55(8), 1595-1617. https://doi.org/10.1093/petrology/egu03510.1093/petrology/egu035
  3. Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., ... & Poli, S. (2019). Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy). Journal of Metamorphic Geology, 37(7), 951-975. https://doi.org/10.1111/jmg.1246310.1111/jmg.12463
  4. Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri, F., ... & Szabó, C. (2020). Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive. Earth and Planetary Science Letters, 536, 116170. https://doi.org/10.1016/j.epsl.2020.11617010.1016/j.epsl.2020.116170
  5. Cesare, B., Acosta-Vigil, A., Bartoli, O., & Ferrero, S. (2015). What can we learn from melt inclusions in migmatites and granulites?. Lithos, 239, 186-216. https://doi.org/10.1016/j.lithos.2015.09.02810.1016/j.lithos.2015.09.028
  6. Cesare, B., Maineri, C., Toaldo, A. B., Pedron, D., & Vigil, A. A. (2007). Immiscibility between carbonic fluids and granitic melts during crustal anatexis: A fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain. Chemical Geology, 237, 433–449. https://doi.org/10.1016/j.chemgeo.2006.07.01310.1016/j.chemgeo.2006.07.013
  7. Connolly, J. A. D. (2009). The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009GC00254010.1029/2009GC002540
  8. Dhuime, B., Hawkesworth, C. J., Delavault, H., & Cawood, P. A. (2018). Rates of generation and destruction of the continental crust: implications for continental growth. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132), 20170403. https://doi.org/10.1098/rsta.2017.040310.1098/rsta.2017.0403618955730275156
  9. Ferrero, S., Ague, J. J., O’Brien, P. J., Wunder, B., Remusat, L., Ziemann, M. A., & Axler, J. (2021a). High-pressure, halogen-bearing melt preserved in ultrahigh-temperature felsic granulites of the Central Maine Terrane, Connecticut (USA). American Mineralogist, 106(8), 1225-1236. https://doi.org/10.2138/am-2021-769010.2138/am-2021-7690
  10. Ferrero, S., Braga, R., Berkesi, M., Cesare, B., & Laridhi Ouazaa, N. (2014). Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, 32(2), 209-225. https://doi.org/10.1111/jmg.1206810.1111/jmg.12068
  11. Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., ... & O’Brien, P. J. (2021b). Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust. Earth and Planetary Science Letters, 569, 117058. https://doi.org/10.1016/j.epsl.2021.11705810.1016/j.epsl.2021.117058
  12. Ferrero, S., Wunder, B., Ziemann, M. A., Wälle, M., & O’Brien, P. J. (2016). Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters, 454, 121-131. https://doi.org/10.1016/j.epsl.2016.08.04310.1016/j.epsl.2016.08.043
  13. Fuhrman, M. L., & Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3-4), 201-215.
  14. Gianola, O., Bartoli, O., Ferri, F., Galli, A., Ferrero, S., Capizzi, L. S., ... & Cesare, B. (2021). Anatectic melt inclusions in ultra high temperature granulites. Journal of Metamorphic Geology, 39(3), 321-342. https://doi.org/10.1111/jmg.1256710.1111/jmg.12567
  15. Holland, T. J. B., & Powell, R. T. J. B. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic Geology, 16(3), 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x10.1111/j.1525-1314.1998.00140.x
  16. Holwell, D. A., Jenkin, G. R. T., Butterworth, K. G., Abraham-James, T., & Boyce, A. J. (2013). Orogenic gold mineralisation hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, East Greenland. Mineralium Deposita, 48(4), 453-466. https://doi.org/10.1007/s00126-012-0434-310.1007/s00126-012-0434-3
  17. Kays, M. A., Goles, G. G., & Grover, T. W. (1989). Precambrian sequence bordering the Skaergaard Intrusion. Journal of Petrology, 30(2), 321-361. https://doi.org/10.1093/petrology/30.2.32110.1093/petrology/30.2.321
  18. Kirkland, C. L., Yakymchuk, C., Hollis, J., Heide-Jørgensen, H., & Danišík, M. (2018). Mesoarchean exhumation of the Akia terrane and a common Neoarchean tectono-thermal history for West Greenland. Precambrian Research, 314, 129-144.10.1016/j.precamres.2018.06.004
  19. Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(1-2), 277-279.
  20. Leeman, W. P., Dasch, E. J., & Kays, M. A. (1976). 207Pb/206Pb whole-rock age of gneisses from the Kangerdlugssuaq area, eastern Greenland. Nature, 263(5577), 469-471.10.1038/263469a0
  21. Nicoli, G., & Ferrero, S. (2021). Nanorocks, volatiles and plate tectonics. Geoscience Frontiers, 12(5), 101188. https://doi.org/10.1016/j.gsf.2021.10118810.1016/j.gsf.2021.101188
  22. Nicoli, G., Thomassot, E., Schannor, M., Vezinet, A., & Jovovic, I. (2018). Constraining a Precambrian Wilson Cycle lifespan: an example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland. Lithos, 296, 1-16. https://doi.org/10.1016/j.lithos.2017.10.01710.1016/j.lithos.2017.10.017
  23. Nicoli, G., Moyen, J. F., & Stevens, G. (2016). Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 6(1), 1-10. doi: 10.1038/srep2635910.1038/srep26359487765627216133
  24. Palin, R. M., Santosh, M., Cao, W., Li, S. S., Hernández-Uribe, D., & Parsons, A. (2020). Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 207, 103172. https://doi.org/10.1016/j.earscirev.2020.10317210.1016/j.earscirev.2020.103172
  25. Tacchetto, T., Bartoli, O., Cesare, B., Berkesi, M., Aradi, L. E., Dumond, G., & Szabó, C. (2019). Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): Evidence of carbon recycling during Neoarchean crustal melting. Chemical Geology, 508, 197-209. https://doi.org/10.1016/j.precamres.2021.10613910.1016/j.precamres.2021.106139
  26. Thrane, K. (2021). The oldest part of the Rae craton identified in western Greenland. Precambrian Research, 357, 106139. https://doi.org/10.1016/j.precamres.2021.10613910.1016/j.precamres.2021.106139
  27. Wager, L. R. (1934). Geological Investigations in East Greenland. (Vol. 105, No. 2-3). CA Reitzels forlag.
  28. Wager, L. R., & Deer, W. A. (1939). Geological investigations in East Greenland, Part IV. Medde lelser om Grønland, 134(5).
  29. White, R. W., Powell, R., & Clarke, G. L. (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. Journal of metamorphic Geology, 20(1), 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x10.1046/j.0263-4929.2001.00349.x
  30. White, R. W., Powell, R. Holland, T. J. B., Johnson, T. E., & Green, E. C. R. (2014). New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261-286. https://doi.org/10.1111/jmg.1207110.1111/jmg.12071
  31. Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gar-diner, N. J., & Szilas, K. (2020). Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland. Precambrian Research, 339, 105615. https://doi.org/10.1016/j.precamres.2020.10561510.1016/j.precamres.2020.105615
DOI: https://doi.org/10.2478/mipo-2022-0001 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 1 - 9
Submitted on: Nov 18, 2021
Accepted on: Jan 12, 2022
Published on: Feb 14, 2022
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Gautier Nicoli, Kerstin Gresky, Silvio Ferrero, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.