Have a personal or library account? Click to login
Mineralogical studies of the Maastrichtian Gerinya Claystone of the Patti Formation, southern Bida Basin, Nigeria: Implication for industrial application Cover

Mineralogical studies of the Maastrichtian Gerinya Claystone of the Patti Formation, southern Bida Basin, Nigeria: Implication for industrial application

Open Access
|Dec 2021

References

  1. Abrahams, P.W., & Parsons, J.A. (1997). Geophagy in the tropic: an appraisal of three geophagic materials. Environmental Geochemistry and Health, 19, 19–22.10.1023/A:1018477817217
  2. Aldega, L., Bigi, S., Carminati, E., Trippetta, F., Corrado, S., & Kavoosi, M.A. (2018). The zagros foldand-thrust belt in the fars province (Iran): II. thermal evolution. Marine and Petroleum Geology, 93, 376–390.10.1016/j.marpetgeo.2018.03.022
  3. Aldega, L., Carminati, E., Scharf, A., Mattern, F., & Al-Wardi, M. (2017). Estimating original thickness and extent of the semail ophiolite in the eastern Oman Mountains by paleothermal indicators. Marine and Petroleum Geology, 84, 18–33.10.1016/j.marpetgeo.2017.03.024
  4. Benson, C.H., Zhai, H., & Wang, X. (1994). Estimating hydraulic conductivity of clay liners. Journal of Geotechnical Engineering, ASCE, 2, 366–387.10.1061/(ASCE)0733-9410(1994)120:2(366)
  5. Brand, C.E., De Jager, L., & Ekosse, G.E. (2010). Possible health effects associated with human geophagic practice: an overview. South African Medical Technology, 1, 11–13. doi/10.10520/EJC74222.
  6. Corrado, S., Aldega, L., Celano, A.S., De Benedetti, A.A., & Giordano, G. (2014). Cap rock efficiency and fluid circulation of natural hydrothermal systems by means of XRD on clay minerals (Sutri, Northern Latium, Italy). Geothermics, 50, 180–188.10.1016/j.geothermics.2013.09.011
  7. Cox, M.E. & Brown, P. (1998). Hydrothermal alteration miner-alogy as an indicator of hidrology at the Ngahwa geothermal field, New Zealand. Geothermics, 27, 259–270.10.1016/S0375-6505(97)10015-3
  8. Daniel, D.E. (1993). Clay liners. In: Geotechnical Practice for Waste Disposal, (ed. David E. Daniel) Chapman & Hall, London, UK, 137–163. doi/10.1007/978-1-4615-3070-1.10.1007/978-1-4615-3070-1_7
  9. Ekosse, G.E., De Jager, L., & Ngole, V.M. (2010). Traditional mining and mineralogy of geophagic clays from Limpopo and free state provinces, South Africa. African Journal of Biotechnology, 47, 8058–8067.10.5897/AJB10.296
  10. Geissler, P.W., Mwaniki, D., Thiong’O, F., & Friis, H. (1998). Geophagy as a risk factor for geohelminth infections: a longitudinal study of Kenyan primary school children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1, 7–11.10.1016/S0035-9203(98)90934-89692137
  11. Grand View Research. (2020). Kaolin market size, share and trends analysis report by application (paper, ceramics, paint and coatings, fiber glass, plastic, rubber, cosmetics, pharmaceutical and medical) by region and segment forecasts, 2020 – 2027. report ID: 978-1-68038-337-9. (Accessed 22 March 2021) https://www.grandviewresearch.com/industry-analysis/ka-olin-market
  12. Hower, J., Eslinger, E., Hower, M.E., & Perry, E.A. (1976). Mechanism of burial metamorphism of argillaceous sediment: mineralogical and chemical evidence. Geological Society of America Bulletin, 5, 725–737.10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
  13. Kawai, K., Saathoff, E., Antelman, G., Msamanga, G., & Fawzi, W.W. (2009). Geophagy (soil-eating) in relation to anaemia and helminth infection among HIV-infected pregnant women in Tanzania. The American Journal of Tropical Medicine and Hygiene, 1, 36–43.10.4269/ajtmh.2009.80.36
  14. Long, M., Zhang, B., Peng, S., Liao, J., Zhang, Y., Wang, J., Wang, M., Qin, B., Huang, J., Huang, J., Chen, X., & Yang, H. (2019). Interactions between two-dimensional nanoclay and blood cells in hemostasis. Materials Science and Engineering C, 105, 110081. doi: 10.1016/j.msec.2019.110081.10.1016/j.msec.2019.110081
  15. Mpuchane, S., Ekosse, G., Gashe, B., Morobe, I., & Coetzee, S. (2008). Mineralogy of southern African medicinal and cosmetic clays and their effects on the growth of selected test microorganisms. Fresenius Environment Bulletin, 15, 547–557.
  16. Murray, H.H. (2007). Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite, and Common Clays, 1st ed.; Elsevier: Oxford, UK. 189. doi.org/978-0-444-51701-2.
  17. National Fertilizer Company of Nigeria (NAFCON), 1985. Tender document for supply of kaolin from Nigeria sources, p 65. In: Akinola, O.O., & Obasi, R.A. (2014). Compositional characteristics and industrial potential of the lateritic clay deposit in Ara-Ijero Ekiti areas, southwestern Nigeria. International Journal of Scientific and Technology Research, 3, 304–311.
  18. Nesbitt, H.W., & Young, G.M. (1989). Formation and diagenesis of weathering profiles; Journal of Geology, 97, 129–147. doi.org/10.1086/629290.10.1086/629290
  19. Obaje, N.G. (2009). Geology and mineral resources of Nigeria. Springer-Verlag Berlin Heidelberg, 221. doi. org/10.1007/978-3-540-92685-6.10.1007/978-3-540-92685-6
  20. Odewumi, S.C. (2013). Mineralogy and geochemistry of geophagic clays from Share area, northern Bida sedimentary basin, Nigeria. African Journal of Natural Science, 16, 87–98.10.4172/2329-6755.1000108
  21. Ojo, O.J., & Akande, S.O. (2009). Sedimentology and depositional environments of the Maastrichtian Patti Formation, southeastern Bida Basin, Nigeria. Cretaceous Research, 30, 1415–1425.10.1016/j.cretres.2009.08.006
  22. Ojo O.J., & Akande S.O. (2020). A revised stratigraphy of the Bida Basin, Nigeria by Rahaman et al., (2019) [Journal of African Earth Sciences., 151, 67–81]: A rebuttal. Journal of African Earth Sciences, 172, 103983.10.1016/j.jafrearsci.2020.103983
  23. Okunlola, O.A., & Owoyemi, K.A. (2015). Compositional characteristics of geophagic clays of Southern Nigeria. Earth Science Research, 4(2), 10-15.10.5539/esr.v4n2p1
  24. Olabode, S.O. (2016). Soft sediment deformation structures in the Maastrichtian Patti Formation, southern Bida Basin Nigeria: implications for the assessment of endogenic triggers in the Maastrichtian sedimentary record. Open Journal of Geology, 6, 410–438.10.4236/ojg.2016.66036
  25. Oyebanjo, O., Ekosse, G., & Odiyo, J., (2020). Physico-Chemical, Mineralogical, and Chemical Characterisation of Cretaceous–Paleogene/Neogene Kaolins within Eastern Dahomey and Niger Delta Basins from Nigeria: Possible Industrial Applications. Minerals, 10, 670. doi:10.3390/min10080670.10.3390/min10080670
  26. Singh, P. (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.10.1016/j.chemgeo.2009.06.013
  27. Strazzera, B., Dondi, M., & Marsigli, M. (1997). Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247–266.10.1016/S0169-1317(97)00010-0
  28. Velde, B., & Meunier A. (2008). The origin of clay minerals in soils and weathered rocks. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-540-75634-7.10.1007/978-3-540-75634-7
  29. Velde, B. (1992). Introduction to Clay Minerals. Dordrecht: Springer. doi.org/10.1007/978-94-011-2368-6.10.1007/978-94-011-2368-6
  30. Velde, B. (1995). Origin and Mineralogy of Clays. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-662-12648-6.10.1007/978-3-662-12648-6
  31. Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.10.1086/622910
DOI: https://doi.org/10.2478/mipo-2021-0002 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 10 - 18
Submitted on: Mar 11, 2021
Accepted on: Dec 20, 2021
Published on: Dec 31, 2021
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Oluwaseye P. Oyetade, Charles I. Konwea, Olusola J. Ojo, Tayelolu M. Odesanmi, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.