Have a personal or library account? Click to login
Evaluating machine learning models for air quality error mapping in Kraków, Poland Cover

Evaluating machine learning models for air quality error mapping in Kraków, Poland

Open Access
|Jan 2026

References

  1. Airly 2024. Available from: <http://www.airly.com>. [18 October 2024].
  2. Arnaut, F, Đurđević, V, Kolarski, A, Srećković, VA & Jevremović, S 2024, ‘Improving air quality data reliability through bidirectional univariate imputation with the random forest algorithm’, Sustainability, vol. 16, no. 17, article number 7629.
  3. Box, GEP & Jenkins, GM 1970, Time series analysis: Forecasting and control, Holden-Day, San Francisco.
  4. Chen, T & Guestrin, C 2016, XGBoost: A scalable tree boosting system, arXiv, Cornell University, US. Available from: <http://arxiv.org/abs/1603.02754>. [18 October 2024].
  5. Danek, T & Zareba, M 2021, ‘The use of public data from low-cost sensors for the geospatial analysis of air pollution from solid fuel heating during the COVID-19 pandemic spring period in Krakow, Poland’, Sensors, vol.21, no. 15, article number 5208.
  6. Danek, T, Weglinska, E & Zareba, M 2022, ‘The influence of meteorological factors and terrain on air pollution concentration and migration: a geostatistical case study from Krakow, Poland’, Scientific Reports, vol.12, article number 11050.
  7. Di Antonio, A, Popoola, OAM, Ouyang, B, Saffell, J & Jones, R.L 2018, ‘Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter’, Sensors, vol. 18, no.9, article number 2790.
  8. ESRI Learning Center 2021, ArcGIS Pro [Computer Software]: Release 2.8, Redlands, ESRI
  9. Firszt, D & Jabłoński, M 2023, ‘Implementacja idei smart city w zarządzaniu miastem. Ocena i oczekiwania mieszkańców na przykładzie studentów krakowskich uczelni’ [‘Implementation of the smart city idea in city management. Assessment and expectations of residents on the example of students of Krakow universities’], Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, vol. 67, no.4, pp. 51–64. Available from: <https://www.dbc.wroc.pl/publication/164087>. [18 October 2024].
  10. Getis, A & Ord, J 1992, ‘The analysis of spatial association by use of distance statistics’, Geographical Analysis, vol. 24, no.3, pp. 189–206.
  11. Herzen, J, Lässig, F, Piazzetta, S.G, Neuer, T, Tafti, L, Raille, G, Van Pottelbergh, T, Pasieka, M, Skrodzki, A, Huguenin, N, Dumonal, M, Koscisz, J, Bader, D, Gusset, F, Benheddi, M, Williamson, C, Kosinski, M, Petrik, M & Grosch, G 2021, Darts: User-friendly modern machine learning for time series, arXiv, Cornell University, US. Available from: <https://arxiv.org/abs/2110.03224>. [18 October 2024].
  12. Jonek-Kowalska, I 2023, ‘Assessing the effectiveness of air quality improvements in Polish cities aspiring to be sustainably smart’, Smart Cities, vol. 6, no. 1, pp. 510–530.
  13. Kobus, D, Nych, A & Sowka, I 2018, ‘Analysis of PM10 high concentration episodes in Warsaw, Krakow and Wroclaw in the years 2005–2017 with application of selected elements of information systems’, E3S Web of Conferences, vol. 44, article number 00070.
  14. Kraków, M.P.K.M 2019, Program Ograniczania Niskiej Emisji [Low-Emission Reduction Programme], Available from: <https://www.krakow.pl/aktualnosci/209034,29,komunikat,mobi_short,program_ograniczania_niskiej_emisji_w_pigulce.html>. [8 October 2024].
  15. Liang, L & Gong, P 2020, ‘Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends’, Scientific Reports, vol.10, article number 18618
  16. Lundberg, S & Lee, S-I 2017, A unified approach to interpreting model predictions, arXiv. Available from: <https://arxiv.org/abs/1705.07874>. [30 March 2025].
  17. Morawska-Horawska, M & Lewik, P 2003, ‘Wpływ wysokości i ukształtowania terenu na zróżnicowanie warunków meteorologicznych w Krakowie’ [‘Influence of altitude and terrain on the variation of meteorological conditions in Krakow’] in: Dynamika zmian środowiska geograficznego pod wpływem antropopresji [Dynamics of changes in the geographic environment under anthropogenic pressure], ed. J Lach, Instytut Geografii Akademii Pedagogicznej, Kraków, pp. 85–94.
  18. Peltier, RE, Castell, N, Clements, AL, Dye, T, Hüglin, C, Kroll, JH, Lung, SCC, Ning, Z, Parsons, M, Penza, M, Reisen, F & Schneidemesser, E 2020, An update on low-cost sensors for the measurement of atmospheric composition, December 2020, World Meteorological Organization, Geneva, Switzerland.
  19. Rada Ministrów 2019, Rozporządzenie w sprawie wartości odniesienia dla niektórych substancji w powietrzu z dnia 24 września 2019 r.) [Regulation on Reference Values for Certain Substances in the Air of 24 September 2019(Dz. U. 2019, poz. 1931]. Available from: <https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001931>. [20 February 2025].
  20. South Coast Air Quality Management District n.d., Airly Sensor Evaluation. Available from: <https://www.aqmd.gov/aq-spec/sensordetail/airly>. [20 February 2025].
  21. Šedivá, T & Štefánik, D 2024, ‘The seasonality of PM and NO2 concentrations in Slovakia and a comparison with chemical-transport model’, Atmosphere, vol. 15, no. 10, article number 1203.
  22. Tsyro, S 2005, ‘To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5?’ Atmospheric Chemistry and Physics, vol. 5, no. 2, pp. 515–532.
  23. Ullah, A, Anwar, SM, Li, J, Nadeem, L, Mahmood, T, Rehman, A & Saba, T 2024, ‘Smart cities: the role of Internet of Things and machine learning in realizing a data-centric smart environment’, Complex & Intelligent Systems, vol. 10, pp. 1607–1637.
  24. WHO 2021, WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Available from: <https://iris.who.int/handle/10665/345329>. [20 February 2025].
  25. Zareba, M & Danek, T 2021, ‘Analysis of air pollution migration during COVID-19 lockdown in Krakow, Poland’, Aerosol and Air Quality Research, vol. 22, no. 3, article number 210275.
  26. Zareba, M, Dlugosz, H, Danek, T & Weglinska, E 2023, ‘Big-data-driven machine learning for enhancing spatiotemporal air pollution pattern analysis’, Atmosphere, vol. 14, no. 2, article number 760.
  27. Zareba, M, Cogiel, S, Danek, T & Weglinska, E 2024a, ‘Machine learning techniques for spatiotemporal air pollution prediction to drive sustainable urban development in the era of energy and data transformation’, Energies, vol. 17, no. 11, article number 2738.
  28. Zareba, M, Weglinska, E & Danek, T 2024b, ‘Air pollution seasons in urban moderate climate areas through big data analytics’, Scientific Reports, vol. 14, article number 3058.
  29. Zeng, A, Chen, M, Zhang, L & Xu, Q 2022, Are transformers effective for time series forecasting?, arXiv preprint Available from: https://doi.org/10.48550/arXiv.2205.13504. [20 February 2025].
  30. Zięba, D & Dworakowska, A 2018, Podsumowanie wyników badań porównawczych urządzeń niskokosztowych do pomiaru stężenia pyłu zawieszonego [Summary of the Results of Comparative Studies of Low-Cost Devices for Measuring Particulate Matter Concentration], Stowarzyszenie Krakowski Alarm Smogowy.
DOI: https://doi.org/10.2478/mgrsd-2025-0026 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Submitted on: Nov 4, 2024
|
Accepted on: Apr 10, 2025
|
Published on: Jan 14, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Mateusz Zaręba, Szymon Cogiel, Elżbieta Węglińska, Tomasz Danek, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT