Have a personal or library account? Click to login
Enhancing urban mobility: predicting cycle paths in Lublin city using GIS and open-source data Cover

Enhancing urban mobility: predicting cycle paths in Lublin city using GIS and open-source data

Open Access
|Jul 2025

References

  1. Akar, G & Clifton, KJ 2009, ‘Influence of individual perceptions and bicycle infrastructure on decision to bike’, Transportation Research Record, vol. 2140, no. 1, pp. 165–172.
  2. Bielecka, E 2020, ‘GIS spatial analysis modeling for land use change. A bibliometric analysis of the intellectual base and trends’, Geosciences, vol. 10, no. 11.
  3. Birch, CPD, Oom, SP & Beecham, JA 2007, ‘Rectangular and hexagonal grids used for observation, experiment and simulation in ecology’, Ecological Modelling, vol. 206, no. 3, pp. 347–359.
  4. Borowska-Stefańska, M, Kowalski, M & Wiśniewski, S 2020, ‘Funkcjonowanie roweru publicznego w dużym mieście: Przykład Łodzi’ [‘Operation of public bicycles in a large city: The case of Łódź’], Wydawnictwo Uniwersytetu Łódzkiego.
  5. Brzeziński, A, Jesionkiewicz-Niedzińska, K, Rezwow-Mosakowska, M & Włodarek, P 2022, ‘WR-D-42-1. Wytyczne projektowania infrastruktury dla rowerów. Część 1: Planowanie tras dla rowerów’ [‘WR-D-42-1. Guidelines for designing bicycle infrastructure. Part 1: Planning bicycle routes’]. Available from: <https://www.gov.pl/attachment/f9fcd496-d071-4909-b9c8-91cf6dea1da1>. [3 September 2024].
  6. Builes-Jaramillo, A & Lotero, L 2022, ‘Spatial-temporal network analysis of the public bicycle sharing system in Medellín, Colombia’, Journal of Transport Geography, vol. 105.
  7. Caggiani, L, Camporeale, R, Binetti, M & Ottomanelli, M 2019, ‘An urban bikeway network design model for inclusive and equitable transport policies’, Transportation Research Procedia, vol. 37, pp. 59–66.
  8. CORINE Land Cover 2024. Available from: <https://land.copernicus.eu/en/products/corine-land-cover>. [9 August 2024].
  9. Gawroński, K, Król, K, Gawrońska, G & Kubicki, B 2019, ‘Analysis of the development of Lublin city bike stations versus the economic and spatial conditions in that city’, Geomatics, Landmanagement and Landscape, vol. 4. no. 4, pp. 183–199.
  10. Geoportal of Lublin n.d. Available from: <https://geoportal.lublin.eu/2d/>. [3 September 2024].
  11. GitHub - nextgis/qgis_molusce: Modules for land use change simulations 2024. Available from: <https://github.com/nextgis/qgis_molusce>. [9 August 2024].
  12. GUGiK 2024, PZGiK Data, Head Office of Geodesy and Cartography. Available from: <https://www.gov.pl/web/gugik/dane-pzgik4>. [8 August 2024].
  13. Hardinghaus, M & Papantoniou, P 2020, ‘Evaluating cyclists’ route preferences with respect to infrastructure’, Sustainability, vol. 12, no. 8.
  14. Hwang, U, Kim, I, Guhathakurta, S & Van Hentenryck, P 2024, ‘Comparing different methods for connecting bike lanes to generate a complete bike network and identify potential complete streets in Atlanta’, Journal of Cycling and Micromobility Research, vol. 2.
  15. Lambin, EF, Geist, HJ & Lepers, E 2003, ‘Dynamics of land-use and land-cover change in tropical regions’, Annual Review of Environment and Resources, vol. 28, pp. 205–241.
  16. Lycourghiotis, S & Crawford, EP 2024, ‘Kryteria projektowania sieci dróg rowerowych z wykorzystaniem GIS, niwelacji topograficznej i analizy przestrzennej’ [‘Criteria for designing a bicycle path network using GIS, topographic leveling and spatial analysis’], Inżynieria Mineralna, vol. 1, no. 1, pp. 247–253.
  17. Marko, M, Ivan, B & Ljupko, Š 2009, Different approaches to the modal split calculation in urban areas.
  18. Raffler, C 2018, QNEAT3 - Qgis Network Analysis Toolbox 3.
  19. Schiavina, M, Freire, S, Carioli, A & MacManus, K 2023, GHS-POP R2023A - GHS population grid multitemporal (1975–2030). Available from: <http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe>. [9 August 2024].
  20. Siqueira, AJ d, Almo, PM d, Cicerelli, RE, Machado, RFC & Almeida, T 2020, ‘Mapping the usability and quality of bicycle paths using a terrain-inclination-based classification, study case: Darcy Ribeiro campus, University of Brasília, Brazil’, Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference, pp. 78–81.
  21. Statistics Poland 2024, Available from: <https://stat.gov.pl/en/>. [18 September 2024].
  22. Urząd Miasta Lublin n.d. Available from: <https://lublin.eu/urzad-miasta-lublin/>. [3 September 2024].
  23. USGS 2024. Available from: <https://www.usgs.gov/>. [9 August 2024].
  24. Zahabi, SAH, Chang, A, Miranda-Moreno, LF & Patterson, Z 2016, ‘Exploring the link between the neighborhood typologies, bicycle infrastructure and commuting cycling over time and the potential impact on commuter GHG emissions’, Transportation Research Part D: Transport and Environment, vol. 47, pp. 89–103.
DOI: https://doi.org/10.2478/mgrsd-2025-0021 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Submitted on: Oct 29, 2024
Accepted on: Apr 6, 2025
Published on: Jul 28, 2025
Published by: Faculty of Geography and Regional Studies, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wojciech Dawid, Bartosz Kubicki, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT