Akar, G & Clifton, KJ 2009, ‘Influence of individual perceptions and bicycle infrastructure on decision to bike’, Transportation Research Record, vol. 2140, no. 1, pp. 165–172.
Bielecka, E 2020, ‘GIS spatial analysis modeling for land use change. A bibliometric analysis of the intellectual base and trends’, Geosciences, vol. 10, no. 11.
Birch, CPD, Oom, SP & Beecham, JA 2007, ‘Rectangular and hexagonal grids used for observation, experiment and simulation in ecology’, Ecological Modelling, vol. 206, no. 3, pp. 347–359.
Borowska-Stefańska, M, Kowalski, M & Wiśniewski, S 2020, ‘Funkcjonowanie roweru publicznego w dużym mieście: Przykład Łodzi’ [‘Operation of public bicycles in a large city: The case of Łódź’], Wydawnictwo Uniwersytetu Łódzkiego.
Brzeziński, A, Jesionkiewicz-Niedzińska, K, Rezwow-Mosakowska, M & Włodarek, P 2022, ‘WR-D-42-1. Wytyczne projektowania infrastruktury dla rowerów. Część 1: Planowanie tras dla rowerów’ [‘WR-D-42-1. Guidelines for designing bicycle infrastructure. Part 1: Planning bicycle routes’]. Available from: <https://www.gov.pl/attachment/f9fcd496-d071-4909-b9c8-91cf6dea1da1>. [3 September 2024].
Builes-Jaramillo, A & Lotero, L 2022, ‘Spatial-temporal network analysis of the public bicycle sharing system in Medellín, Colombia’, Journal of Transport Geography, vol. 105.
Caggiani, L, Camporeale, R, Binetti, M & Ottomanelli, M 2019, ‘An urban bikeway network design model for inclusive and equitable transport policies’, Transportation Research Procedia, vol. 37, pp. 59–66.
Gawroński, K, Król, K, Gawrońska, G & Kubicki, B 2019, ‘Analysis of the development of Lublin city bike stations versus the economic and spatial conditions in that city’, Geomatics, Landmanagement and Landscape, vol. 4. no. 4, pp. 183–199.
GitHub - nextgis/qgis_molusce: Modules for land use change simulations 2024. Available from: <https://github.com/nextgis/qgis_molusce>. [9 August 2024].
Hwang, U, Kim, I, Guhathakurta, S & Van Hentenryck, P 2024, ‘Comparing different methods for connecting bike lanes to generate a complete bike network and identify potential complete streets in Atlanta’, Journal of Cycling and Micromobility Research, vol. 2.
Lambin, EF, Geist, HJ & Lepers, E 2003, ‘Dynamics of land-use and land-cover change in tropical regions’, Annual Review of Environment and Resources, vol. 28, pp. 205–241.
Lycourghiotis, S & Crawford, EP 2024, ‘Kryteria projektowania sieci dróg rowerowych z wykorzystaniem GIS, niwelacji topograficznej i analizy przestrzennej’ [‘Criteria for designing a bicycle path network using GIS, topographic leveling and spatial analysis’], Inżynieria Mineralna, vol. 1, no. 1, pp. 247–253.
Schiavina, M, Freire, S, Carioli, A & MacManus, K 2023, GHS-POP R2023A - GHS population grid multitemporal (1975–2030). Available from: <http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe>. [9 August 2024].
Siqueira, AJ d, Almo, PM d, Cicerelli, RE, Machado, RFC & Almeida, T 2020, ‘Mapping the usability and quality of bicycle paths using a terrain-inclination-based classification, study case: Darcy Ribeiro campus, University of Brasília, Brazil’, Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference, pp. 78–81.
Zahabi, SAH, Chang, A, Miranda-Moreno, LF & Patterson, Z 2016, ‘Exploring the link between the neighborhood typologies, bicycle infrastructure and commuting cycling over time and the potential impact on commuter GHG emissions’, Transportation Research Part D: Transport and Environment, vol. 47, pp. 89–103.