Have a personal or library account? Click to login
Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data Cover

Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data

Open Access
|Apr 2024

References

  1. Ahmed, M, Sultan, M, Elbayoumi, T &amp; Tissot, P 2019, ‘Forecasting grace data over the African watersheds using artificial neural networks’, <em>Remote Sensing</em>, vol. 11, no. 15, article number 1769.
  2. Babaeian, E, Sadeghi, M, Jones, SB, Montzka, C, Vereecken, H &amp; Tuller, M 2019, ‘Ground, proximal, and satellite remote sensing of soil moisture’, <em>Reviews of Geophysics</em>, vol. 57, no. 2, pp. 530–616.
  3. Becker, M, Meyssignac, B, Xavier, L, Cazenave, A, Alkama, R &amp; Decharme, B 2011, ‘Past terrestrial water storage (1980–2008) in the amazon basin reconstructed from GRACE and in situ river Gauging data’, <em>Hydrology and Earth System Sciences</em>, vol. 15, no. 2, pp. 533–546.
  4. Bonaccorso, G 2018, <em>Machine Learning Algorithms: Popular algorithms for data science and machine learning</em>. Packt Publishing Ltd, Birmingham, UK.
  5. Chai, T &amp; Draxler, RR 2014, ‘Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature’, <em>Geoscientific model development</em>, vol. 7, no. 3, pp. 1247–1250.
  6. Chen, JL, Wilson, CR, Tapley, BD &amp; Grand, S 2007, ‘Grace detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake’, <em>Geophysical Research Letters</em>, vol. 34, no. 13, pp. 1–5.
  7. Cheng, M &amp; Tapley, BD 2004, ‘Variations in the Earth’s oblateness during the past 28 years’, <em>Journal of Geophysical Research: Solid Earth</em>, vol. 109(B9), pp. 1–9.
  8. Dahle, C, Flechtner, F, Gruber, C, König, D, König, R, Michalak, G &amp; Neumayer, K-H 2013, <em>GFZ GRACE Level-2 processing standards document for level-2 product release 0005: revised edition</em>, Scientific Technical Report STR12/02 – Data. Available from: &lt;<a href="http://icgem.gfz-potsdam.de/L2-GFZ_ProcStds_0005_v1.1-1.pdf" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">http://icgem.gfz-potsdam.de/L2-GFZ_ProcStds_0005_v1.1-1.pdf</a>&gt;. [10 January 2024].
  9. De Villiers, M 2001, Water: <em>The fate of our most precious resource</em>. Houghton Mifflin Harcourt, New York, USA.
  10. Eicker, A, Schumacher, M, Kusche, J, Döll, P &amp; Schmied, HM 2014, ‘Calibration/data assimilation approach for integrating GRACE data into the watergap global hydrology model (WGHM) using an ensemble Kalman filter: First results’, <em>Surveys in Geophysics</em>, vol. 35, no. 6, pp. 1285–1309.
  11. Hamshaw, SD, Dewoolkar, MM, Schroth, AW, Wemple, BC &amp; Rizzo, DM 2018, ‘A new machine-learning approach for classifying hysteresis in suspended-sediment discharge relationships using high-frequency monitoring data’, <em>Water Resources Research</em>, vol. 54, no. 6, pp. 4040–4058.
  12. Ioannidis, JP 2005, ‘Why most published research findings are false?’, <em>PLOS Medicine</em>, vol. 2, no. 8(e124).
  13. Irrgang, C, Saynisch-Wagner, J, Dill, R, Boergens, E &amp; Thomas, M 2020, ‘Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements’, <em>Geophysical Research Letters</em>, vol. 47, no. 17, article number e2020GL089258.
  14. Jing, W, Di, L, Zhao, X, Yao, L, Xia, X, Liu, Y, Yang, J, Li, Y &amp; Zhou, C 2020, ‘A data-driven approach to generate past GRACE-like terrestrial water storage solution by calibrating the land surface model simulations’, <em>Advances in Water Resources</em>, vol. 143, article number 103683.
  15. Kuczynska-Siehien, J, Piretzidis, D, Sideris, MG, Olszak, T &amp; Szabó, V 2019, ‘Monitoring of extreme land hydrology events in central Poland using GRACE, land surface models and absolute gravity data’, <em>Journal of Applied Geodesy</em>, vol. 13, no. 3, pp. 229–243.
  16. Liu, Y, Dorigo, WA, Parinussa, R, de Jeu, RA, Wagner, W, McCabe, MF, Evans, J &amp; Van Dijk, A 2012, ‘Trend-preserving blending of passive and active microwave soil moisture retrievals’, <em>Remote Sensing of Environment</em>, vol. 123, pp. 280–297.
  17. Maulud, D &amp; Abdulazeez, AM 2020, ‘A review on linear regression comprehensive in machine learning’, <em>Journal of Applied Science and Technology Trends</em>, vol. 1, no. 4, pp. 140–147.
  18. Nagelkerke, NJD 1991, ‘A note on a general definition of the coefficient of determination’, <em>Biometrika</em>, vol. 78, no. 3, pp. 691–692.
  19. NASA’s Goddard Earth Sciences Data and Information Services Center, 2023. Available from: &lt;<a href="https://disc.gsfc.nasa.gov/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://disc.gsfc.nasa.gov/</a>&gt;. [10 December 2023].
  20. Nash, J 1970, ‘River flow forecasting through conceptual models, I: A discussion of principles’, <em>Journal of Hydrology</em>, vol. 10, no. 3, pp. 398–409.
  21. Njoku, EG, Ashcroft, P, Chan, TK &amp; Li, L 2005, ‘Global survey and statistics of radio-frequency interference in AMSR-E land observations’, <em>IEEE Transactions on Geoscience and Remote Sensing</em>, vol. 43, no. 5, pp. 938–947.
  22. Peltier, W, Argus, DF &amp; Drummond, R 2018, ‘Comment on “an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al.’ <em>Journal of Geophysical Research: Solid Earth</em>, vol. 123, no. 2, pp. 2019–2028.
  23. Physical Oceanography Distributed Active Archive Center, 2023. Available from: &lt;<a href="https://podaac-tools.jpl.nasa.gov/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://podaac-tools.jpl.nasa.gov/</a>&gt;. [10 December 2023].
  24. Ries, J, Bettadpur, S, Eanes, R, Kang, Z, Ko, U, McCullough, C, Nagel, P, Pie, N, Poole, S, Richter, T, Save, H &amp; Tapley, B, 2016, <em>The combined gravity model GGM05C</em>, GFZ Data Services.
  25. Robinson, DA, Campbell, CS, Hopmans, JW, Hornbuckle, BK, Jones, SB, Knight, R, Ogden, F, Selker, J &amp; Wendroth, O 2008, ‘Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review’, <em>Vadose Zone Journal</em>, vol. 7, no. 1, pp. 358–389.
  26. Seyoum, WM, Kwon, D &amp; Milewski, AM 2019, ‘Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system’, <em>Remote Sensing</em>, vol. 11, no. 7, article number 824.
  27. Seyoum, WM &amp; Milewski, AM 2017, ‘Improved methods for estimating local terrestrial water dynamics from GRACE in the northern high plains’, <em>Advances in water resources</em>, vol. 110, pp. 279–290.
  28. Sun, AY 2013, ‘Predicting groundwater level changes using GRACE data’, <em>Water resources research</em>, vol. 49, no. 9, pp. 5900–5912.
  29. Sun, AY, Scanlon, BR, Save, H &amp; Rateb, A 2021, ‘Reconstruction of GRACE total water storage through automated machine learning’, <em>Water Resources Research</em>, vol. 57, no. 2, article number e2020WR028666.
  30. Sun, AY, Scanlon, BR, Zhang, Z, Walling, D, Bhanja, SN, Mukherjee, A &amp; Zhong, Z 2019, ‘Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch?’, <em>Water Resources Research</em>, vol. 55, no. 2, pp. 1179–1195.
  31. Sun, Z, Long, D, Yang, W, Li, X &amp; Pan, Y 2020, ‘Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins’, <em>Water Resources Research</em>, vol. 56(4), article number e2019WR026250.
  32. Swenson, S, Chambers, D &amp; Wahr, J 2008a, ‘Estimating geocenter variations from a combination of GRACE and ocean model output’, <em>Journal of Geophysical Research: Solid Earth</em>, vol. 113, no. B8, pp. 1–12.
  33. Swenson, S, Famiglietti, J, Basara, J &amp; Wahr, J. 2008b, ‘Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data’, <em>Water Resources Research</em>, vol. 44, no. 1, pp. 1–12.
  34. Swenson, S &amp; Wahr, J 2006, ‘Post-processing removal of correlated errors in GRACE data’, <em>Geophysical research letters</em>, vol. 33, no. 8, pp. 1–4.
  35. Szabó, V &amp; Marjańska, D 2020, ‘Accuracy analysis of gravity field changes from GRACE RL06 and RL05 data compared to in situ gravimetric measurements in the context of choosing optimal filtering type’, <em>Artificial Satellites</em>, vol. 55, no. 3, pp. 100–117.
  36. Szabó, V &amp; Osińska-Skotak, K 2023, ‘Similarities and differences in the Earth’s water variations signal provided by GRACE and AMSR-E observations using maximum covariance analysis at various land cover data backgrounds’ <em>Artificial Satellites</em>, vol. 58, no. 2, pp. 63–87.
  37. Szabó, V 2023, ‘Comparison features importance for temporal and spatial-temporal approaches in GRACE and GRACE-FO signal reconstruction based on GLDAS data’, <em>International Journal of Hydrology Science and Technology</em>, vol. 16, no. 4, pp. 370–389.
  38. Tapley, BD, Bettadpur, S, Watkins, M &amp; Reigber, C 2004, ‘The gravity recovery and climate experiment: Mission overview and early results’, <em>Geophysical research letters</em>, vol. 31, no. 9.
  39. van der Vliet, M, van der Schalie, R, Rodriguez-Fernandez, N, Colliander, A, de Jeu, R, Preimesberger, W, Scanlon, T &amp; Dorigo, W 2020, ‘Reconciling flagging strategies for multi-sensor satellite soil moisture climate data records’, <em>Remote Sensing</em>, vol. 12, no. 20, article number 3439.
  40. Wahr, J, Molenaar, M &amp; Bryan, F 1998, ‘Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE’, <em>Journal of Geophysical Research: Solid Earth</em>, vol. 103, no. B12, pp. 30205–30229.
  41. Wziontek, H, Bonvalot, S, Falk, R, Gabalda, G, Mäkinen, J, Pálinkáš, V, Rülke, A &amp; Vitushkin, L 2021, ‘Status of the International Gravity Reference System and Frame’, <em>Journal of Geodesy</em> vol. 95 no. 7.
DOI: https://doi.org/10.2478/mgrsd-2023-0033 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 80 - 86
Submitted on: Jan 20, 2024
Accepted on: Apr 21, 2024
Published on: Apr 30, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Viktor Szabó, Katarzyna Osińska-Skotak, Tomasz Olszak, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.