Have a personal or library account? Click to login
Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data Cover

Using machine learning techniques to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave data

Open Access
|Apr 2024

Figures & Tables

Figure 1.

Random Forest Regressor model: (a) residuals; (b) prediction identitySource: own elaboration
Random Forest Regressor model: (a) residuals; (b) prediction identitySource: own elaboration

Figure 2.

Random Forest Regressor model spatial distribution of metrics: (a) NSE; (b) RMSE; (c) NRMSE; (d) R2Source: own elaboration
Random Forest Regressor model spatial distribution of metrics: (a) NSE; (b) RMSE; (c) NRMSE; (d) R2Source: own elaboration

Figure 3.

(a) Predicted ΔTWS and true ΔTWS with SM predictors from AMSR-E; (b) Predicted ΔTWS and true ΔTWS with dg validation dataSource: own elaboration
(a) Predicted ΔTWS and true ΔTWS with SM predictors from AMSR-E; (b) Predicted ΔTWS and true ΔTWS with dg validation dataSource: own elaboration

The achieved results on the test data sample

ModelRMSE [m]R2Δ RMSE [%]Δ R2 [%]1-R2Δ 1-R2 [%]
Random Forest Regressor0.0350.76151.3380700.00.23976.1
Extra Trees Regressor0.0350.75750.9378700.00.24375.7
Extreme Gradient Boosting0.0370.73948.9369350.00.26273.9
K Neighbors Regressor0.0380.72547.7362450.00.27572.5
Light Gradient Boosting Machine0.0380.71546.7357750.00.28571.5
Decision Tree Regressor0.0480.54632.8273000.00.45454.6
Gradient Boosting Regressor0.0520.46927.3234600.00.53146.9
Linear Regression0.0690.0743.936950.00.9267.4
Least Angle Regression0.0690.0743.936950.00.9267.4
Bayesian Ridge0.0690.0743.936900.00.9267.4
Ridge Regression0.0690.0683.734150.00.9326.8
Huber Regressor0.0700.0623.231000.00.9386.2
Orthogonal Matching Pursuit0.0720.0000.250.01.0000.0
Lasso Regression0.072−0.0010.2−150.01.0010.0
Elastic Net0.072−0.0010.2−150.01.0010.0
Lasso Least Angle Regression0.072−0.0010.2−150.01.0010.0
Dummy Regressor0.072−0.0010.2−150.01.0010.0
AdaBoost Regressor0.073−0.021−0.9−10450.01.021−2.1
Passive Aggressive Regressor0.086−0.485−20.0−242550.01.485−48.5
sin+cos annual function (baseline)0.0720.000--1.000
sin+cos semiannual function0.0950.000−32.70.01.0000.0
DOI: https://doi.org/10.2478/mgrsd-2023-0033 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 80 - 86
Submitted on: Jan 20, 2024
Accepted on: Apr 21, 2024
Published on: Apr 30, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Viktor Szabó, Katarzyna Osińska-Skotak, Tomasz Olszak, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.